360 likes | 516 Views
Review and Announcement. Ethernet Ethernet CSMA/CD algorithm Hubs, bridges, and switches Hub: physical layer Can’t interconnect 10BaseT & 100BaseT Bridges and switches: data link layers Wireless links and LANs 802.11 a, b, g. All use CSMA/CA for multiple access
E N D
Review and Announcement • Ethernet • Ethernet CSMA/CD algorithm • Hubs, bridges, and switches • Hub: physical layer • Can’t interconnect 10BaseT & 100BaseT • Bridges and switches: data link layers • Wireless links and LANs • 802.11 a, b, g. • All use CSMA/CA for multiple access • Homework 4 due tonight so that we can discuss it in final review tomorrow • Final review in Thu. Class • Final 3/16 (Th) 12:30-2:00pm
Network Security Overview • What is network security? • Principles of cryptography • Authentication • Access control: firewalls • Attacks and counter measures • Part of the final
What is network security? Confidentiality: only sender, intended receiver should “understand” message contents • sender encrypts message • receiver decrypts message Authentication: sender, receiver want to confirm identity of each other Message Integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection Access and Availability: services must be accessible and available to users
Friends and enemies: Alice, Bob, Trudy • well-known in network security world • Bob, Alice (lovers!) want to communicate “securely” • Trudy (intruder) may intercept, delete, add messages Alice Bob data, control messages channel secure sender secure receiver data data Trudy
Who might Bob, Alice be? • … well, real-life Bobs and Alices! • Web browser/server for electronic transactions (e.g., on-line purchases) • on-line banking client/server • DNS servers • routers exchanging routing table updates • other examples?
There are bad guys (and girls) out there! Q: What can a “bad guy” do? A: a lot! • eavesdrop: intercept messages • actively insert messages into connection • impersonation: can fake (spoof) source address in packet (or any field in packet) • hijacking: “take over” ongoing connection by removing sender or receiver, inserting himself in place • denial of service: prevent service from being used by others (e.g., by overloading resources) more on this later ……
Overview • What is network security? • Principles of cryptography • Authentication • Access control: firewalls • Attacks and counter measures
K K A B The language of cryptography Alice’s encryption key Bob’s decryption key symmetric key crypto: sender, receiver keys identical public-key crypto: encryption key public, decryption key secret (private) encryption algorithm decryption algorithm ciphertext plaintext plaintext
Symmetric key cryptography substitution cipher: substituting one thing for another • monoalphabetic cipher: substitute one letter for another plaintext: abcdefghijklmnopqrstuvwxyz ciphertext: mnbvcxzasdfghjklpoiuytrewq E.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc • Q: How hard to break this simple cipher?: • brute force (how hard?) • other?
K K A-B A-B K (m) m = K ( ) A-B A-B Symmetric key cryptography symmetric key crypto: Bob and Alice share know same (symmetric) key: K • e.g., key is knowing substitution pattern in mono alphabetic substitution cipher • Q: how do Bob and Alice agree on key value? encryption algorithm decryption algorithm ciphertext plaintext plaintext message, m K (m) A-B A-B
Public Key Cryptography symmetric key crypto • requires sender, receiver know shared secret key • Q: how to agree on key in first place (particularly if never “met”)? public key cryptography • radically different approach [Diffie-Hellman76, RSA78] • sender, receiver do not share secret key • public encryption key known to all • private decryption key known only to receiver
+ K (m) B - + m = K (K (m)) B B Public key cryptography + Bob’s public key K B - Bob’s private key K B encryption algorithm decryption algorithm plaintext message plaintext message, m ciphertext
K (K (m)) = m B B - + 1 2 Public key encryption algorithms Requirements: need K ( ) and K ( ) such that . . + - B B + given public key K , it should be impossible to compute private key K B - B RSA: Rivest, Shamir, Adelson algorithm
Overview • What is network security? • Principles of cryptography • Authentication • Access control: firewalls • Attacks and counter measures
Authentication Goal: Bob wants Alice to “prove” her identity to him Protocol ap1.0:Alice says “I am Alice” “I am Alice” Failure scenario??
Authentication Goal: Bob wants Alice to “prove” her identity to him Protocol ap1.0:Alice says “I am Alice” in a network, Bob can not “see” Alice, so Trudy simply declares herself to be Alice “I am Alice”
Alice’s IP address “I am Alice” Authentication: another try Protocol ap2.0:Alice says “I am Alice” in an IP packet containing her source IP address Failure scenario??
Alice’s IP address “I am Alice” Authentication: another try Protocol ap2.0:Alice says “I am Alice” in an IP packet containing her source IP address Trudy can create a packet “spoofing” Alice’s address
Alice’s password Alice’s IP addr “I’m Alice” Alice’s IP addr OK Authentication: another try Protocol ap3.0:Alice says “I am Alice” and sends her secret password to “prove” it. Failure scenario??
Alice’s password Alice’s IP addr “I’m Alice” Alice’s IP addr OK Authentication: another try Protocol ap3.0:Alice says “I am Alice” and sends her secret password to “prove” it. Alice’s password Alice’s IP addr “I’m Alice” playback attack: Trudy records Alice’s packet and later plays it back to Bob
encrypted password Alice’s IP addr “I’m Alice” Alice’s IP addr OK Authentication: yet another try Protocol ap3.1:Alice says “I am Alice” and sends her encryptedsecret password to “prove” it. Failure scenario??
encrypted password Alice’s IP addr “I’m Alice” Alice’s IP addr OK Authentication: another try Protocol ap3.1:Alice says “I am Alice” and sends her encrypted secret password to “prove” it. encryppted password Alice’s IP addr “I’m Alice” record and playback still works!
K (R) A-B Authentication: yet another try Goal:avoid playback attack Nonce:number (R) used only once –in-a-lifetime ap4.0:to prove Alice “live”, Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key “I am Alice” R Alice is live, and only Alice knows key to encrypt nonce, so it must be Alice! Failures, drawbacks?
Overview • What is network security? • Principles of cryptography • Authentication • Access control: firewalls • Attacks and counter measures
public Internet administered network firewall Firewalls isolates organization’s internal net from larger Internet, allowing some packets to pass, blocking others. firewall
Firewalls: Why prevent denial of service attacks: • SYN flooding: attacker establishes many bogus TCP connections, no resources left for “real” connections. prevent illegal modification/access of internal data. • e.g., attacker replaces CIA’s homepage with something else allow only authorized access to inside network (set of authenticated users/hosts) two types of firewalls: • application-level • packet-filtering
internal network connected to Internet via router firewall router filters packet-by-packet, decision to forward/drop packet based on: source IP address, destination IP address TCP/UDP source and destination port numbers ICMP message type TCP SYN and ACK bits Packet Filtering Should arriving packet be allowed in? Departing packet let out?
Example 1: block incoming and outgoing datagrams with IP protocol field = 17 and with either source or dest port = 23. All incoming and outgoing UDP flows and telnet connections are blocked. Example 2: Block inbound TCP segments with ACK=0. Prevents external clients from making TCP connections with internal clients, but allows internal clients to connect to outside. Packet Filtering
Overview • What is network security? • Principles of cryptography • Authentication • Access control: firewalls • Attacks and counter measures
src:B dest:A payload Internet security threats Packet sniffing: • broadcast media • promiscuous NIC reads all packets passing by • can read all unencrypted data (e.g. passwords) • e.g.: C sniffs B’s packets C A B Countermeasures?
src:B dest:A payload Internet security threats Packet sniffing: countermeasures • all hosts in organization run software that checks periodically if host interface in promiscuous mode. C A B
src:B dest:A payload Internet security threats IP Spoofing: • can generate “raw” IP packets directly from application, putting any value into IP source address field • receiver can’t tell if source is spoofed • e.g.: C pretends to be B C A B Countermeasures?
src:B dest:A payload Internet security threats IP Spoofing: ingress filtering • routers should not forward outgoing packets with invalid source addresses (e.g., datagram source address not in router’s network) • great, but ingress filtering can not be mandated for all networks C A B
Virus Statistics • 1988: Less than 10 known viruses • 1990: New virus found every day • 1993: 10-30 new viruses per week • 1999: 45,000 viruses and variants Source: McAfee