440 likes | 693 Views
以流量為基礎之 IEEE 802.16e 睡眠排程機制 A Load-based Power Saving and Scheduling Scheme in IEEE 802.16e. 國立暨南國際大學 資訊工程系 楊峻權 2010.05.04. Outline. Introduction Wireless Standards, IEEE 802.16e/m Power Saving Techniques IEEE 802.16e/m Power Saving Class Related Work Load-based Power Saving
E N D
以流量為基礎之IEEE 802.16e睡眠排程機制A Load-based Power Saving and Scheduling Scheme in IEEE 802.16e 國立暨南國際大學 資訊工程系 楊峻權 2010.05.04
Outline • Introduction • Wireless Standards, IEEE 802.16e/m • Power Saving Techniques • IEEE 802.16e/m Power Saving Class • Related Work • Load-based Power Saving • LBPS-Aggr, LBPS-Split, LBPS-Merge • Performance Evaluation • Conclusion
Wireless Standards Wide Area Network (WAN) 802.16e/m Nomadic 802.20 Mobile 802.21 Handoff 802.22 WRAN 2, 2.5, 3G Cellular Metropolitan Area Network (MAN) 802.16/WiMax Fixed Wireless MAN Local Area Network (LAN) 802.11 Wi-Fi Personal Area Network (PAN) 802.15.1 Bluetooth 802.15.3 802.15.4 Zigbee
IEEE 802.16e • Newly developed broadband wireless communication technology • MSS is battery-powered • An effective power-saving strategy is necessary for extending the operation time • Periodically turn off the transceiver to save power (Sleep Mode)
IEEE 802.16e MAC protocol • Frequency division duplex (FDD) mode and time division duplex (TDD) mode • Downlink: from the BS to MSSs • Point-to-multipoint broadband wireless access • Uplink • Multiple MSSs share one slotted uplink channel via TDD on a demand basis for voice, data, and multimedia traffic • The BS handles bandwidth allocation by assigning uplink slots based on requests from MSSs
IEEE 802.16e Service classes • Unsolicited Grant Service (UGS) • Real-Time Polling Service (rtPS) • Non-Real-Time Polling Service (nrtPs) • Best Effort (BE) IEEE 802.16e IEEE 802.16m (1Gbps, 4G)
IEEE 802.16m Service classes • Real-time constant bit-rate(e.g., VoIP without silence suppression) • Extended real-time variable bit-rate(e.g., VoIP with silence suppression) • Real-time variable bit-rate(e.g., MPEG video) • Non-real time variable bit-rate(e.g., FTP, HTTP) • Best effort(e.g., E-mail)
Power Saving Techniques (1) • Application layer • Load partitioning (computation performed at BS) • Reduce # of transmissions for operations (e.g. via data compression) • Transport layer • Reduce # of retransmissions • Network layer • Power efficient routing through a multi-hop network
Power Saving Techniques (2) • Data link layer • Reduce # of packet errors at a receiving node • Automatic Repeat Request (ARQ)and Forward Error Correction (FEC) • MAC layer • Sleep scheduling protocols • Cycle the radio between its on and off power states • Physical layer • Proper hardware design techniques
IEEE 802.16e Power Saving • Three types of Power Saving Class (PSC) • Type I: MSS doubles its next sleep period if no packets are sent or received • Type II: MSS repeats the sleeping and listening periods in a round-robin fashion • Type III: MSS sleeps for the predefined period and then returns to normal operation
Related Work (1) • Performance analysis (mainly PSC Type I) • For downlink traffic by semi-Markov chain (IEEE Comm. Mag. 2005) • For downlink & uplink by Poisson traffic pattern (IEEE Comm. Mag. 2006) • Hyper-Erlang distributed inter-arrival time (IEEE WCNC 2007) • Optimal selection of PSC I and II (IEEE WCNC 2007)
Related Work (2) • Adaptive power saving mechanisms • Adjusting the waiting time before entering the sleep mode • Adjusting the initial and final sleep windows (IEEE Globecom 2006) • Delay-based sleep scheduling • Latest enhancements (IEEE Trans. VT 2009, 2010)
Load-based Power Saving • Weakness of PSC I and PSC II • Exponential increase or constant pattern • Traffic modeling and Measurement • Poisson arrival process (uplink & downlink) • MSS’s load sleep cycle length • Data accumulation threshold (1 time frame) • BS responsible for sleep schedule
LBPS Mathematics (2) Data_TH = one time frame of data Prob_TH = 0.8 in the simulation
Problem with LBPS-Aggr • Unrealistic assumption of synchronized sleep cycle for all MSSs • Low utilization of mini-slots in a time frame • Two enhancements • LBPS-Split • LBPS-Merge
Features of LBPS-Split • Dividing MSSs to separate groups • All MSSs with the same length(K*) of the sleep cycle • Is it possible to use different value of K* for different MSS? LBPS-Merge • Schedulability for different K*
Performance Criteria • Power Saving Efficiency (PSE) • PSE = (K-1)/K • Access delay
Conclusion & Future Work • Load-Based Power Saving • Traffic Modeling & Measurement • LBPS-Aggr, LBPS-Split, LBPS-Merge • Better power saving efficiency • Future work • Integrated real-time and non-real-time • More general traffic modeling