1 / 22

Physics 2053C – Fall 2001

Physics 2053C – Fall 2001. Chapter 7 Linear Momentum Conservation of Momentum. Conservation of Momentum. Recall: Generalized Work-Energy Theorem K 1 + U 1 + W nc = K 2 + U 2 Conservation of Energy means the total energy doesn’t change.

dasan
Download Presentation

Physics 2053C – Fall 2001

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Physics 2053C – Fall 2001 Chapter 7 Linear Momentum Conservation of Momentum Dr. Larry Dennis, FSU Department of Physics

  2. Conservation of Momentum • Recall: • Generalized Work-Energy Theorem K1 + U1 + Wnc = K2 + U2 Conservation of Energy means the total energy doesn’t change. • Conservation of Momentum means the total momentum doesn’t change. What’s Momentum????

  3. Momentum p = mv • Momentum = mass * velocity • Momentum is a vector. • It is parallel to the velocity.

  4. Equivalent Formulation of Newton’s Second Law The rate of change of momentum of a body is equal to the net force applied to it.

  5. Equivalent Formulation of Newton’s Second Law The rate of change of momentum of a body is equal to the net force applied to it.

  6. Newton’s Second Law & Momentum • When there is a net force: Momentum changes. • p =  Ft = Impulse • When there is no net force: Momentum remains constant. • p =  Ft = 0

  7. CAPA 1 & 2 • A golf ball of mass 0.05 kg is hit off the tee at a speed of 45 m/s. The golf club was in contact with the ball for 5.0x10-3 s. • Find the impulse imparted to the ball. Impulse = Ft = p = mvf – mvo Impulse = m(vf – vo) = 0.05kg * (45 – 0)m/s Impulse = 2.25 kg-m/s = 2.25 N-s

  8. CAPA 1 & 2 • A golf ball of mass 0.05 kg is hit off the tee at a speed of 45 m/s. The golf club was in contact with the ball for 5.0x10-3 s. • Find the average force imparted to the golf ball by the club. Impulse = Ft ( = 2.25 N-s ) Impulse/t = F F = 2.25 N-s/5.0x10-3 s = 450 N

  9. Application to Collisions When p= 0 then: Momentum Before Collision = Momentum After Collision Mathematically this means: M1V1b + M2V2b = M1V1a + M2V2a

  10. Types of Collisions An Elastic Collision – Kinetic Energy does not change. An Inelastic Collision – Kinetic Energy changes

  11. Inelastic Collision: CAPA 4 Momentum Before Collision = Momentum After Collision MtVtb + MsVsb = MtVta + MsVsa Vtb Vsb Vta = Vsa = 0 MtVtb + MsVsb = (Mt+Ms) 0 MtVtb = - MsVsb Vsb = -Vtb*Mt/Ms

  12. Inelastic Collision Momentum Before Collision = Momentum After Collision M1V1b + M2V2b = M1V1a + M2V2a V1b = Vb V2b = 0 V1a = V2a = Va M1Vb + M20 = (M1+M2)Va

  13. Vb Va Inelastic Collisions (cont) M1Vb + M20 = (M1+M2)Va M1Vb = (M1+M2)Va M1/(M1+M2) Vb = Va

  14. V1b V2b U1b U2b Center of Mass Velocity M1V1b + M2V2b (M1 + M2 )Vcm U = V - Vcm and V = U + Vcm

  15. U1b U2b Elastic Collision in the CM U2a U1a M1U1a + M2U2a = 0 M1U1b + M2U2b = 0 ½M1U21b + ½M2U22b = ½M1U21a + ½M2U22a

  16. Elastic Collision in the CM M1U1b + M2U2b = 0 M1U1a + M2U2a = 0 ½M1U21b + ½M2U22b = ½M1U21a + ½M2U22a Solution – Mirror Image: U1a= -U1b U2a= -U2b

  17. 3.88 m/s 4.23 m/s Elastic Collision in the CM: CAPA #6-9 • A pair of bumper cars in an amusement park ride collide elastically as one approaches the other directly from the rear. One has mass m1 = 467 kg and the other mass m2 = 567 kg. If the lighter one approaches at v1 = 4.23 m/s and the other one is moving at v2 = 3.88 m/s, calculate: • the velocity of the lighter car after the collision. • the velocity of the heavier car after the collision. • the change in momentum of the lighter car. • the change in momentum of the heavier car.

  18. 3.88 m/s Elastic Collision in the CM: CAPA #6-9 • Calcuate Vcm = (M1V1b+M2V2b)/(M1+M2) • Calcuate U1b and U2b • U1b = V1b – Vcm and U2b = V2b – Vcm • Set U1a = -U1b and U2a = -U2b • Calcuate V1a and V2a • V1a = U1a + Vcm and V2a = U2a + Vcm

  19. U2b U1b U1a U2a Elastic Collision in the CM: CAPA #6-9 • Calcuate Vcm = (M1V1b+M2V2b)/(M1+M2) • Calcuate U1b and U2b • U1b = V1b – Vcm and U2b = V2b – Vcm Vcm = (M1V1b+M2V2b)/(M1+M2) Vcm = (467*4.23 + 567*3.88)/(467+567) = 4.038 m/s U1b = V1a - Vcm = 4.23 m/s - 4.038 m/s = 0.192 m/s U2b = V2b - Vcm = 3.88 m/s - 4.038 m/s = -0.158 m/s

  20. U2b U1b U1a U2a Elastic Collision in the CM: CAPA #6-9 • Set U1a = -U1b and U2a = -U2b • Calcuate V1a and V2a • V1a = U1a + Vcm and V2a = U2a + Vcm U1a = - U1b = -0.192 m/s U2a = -U2b = 0.158 m/s V1a = U1a + Vcm = -0.192 m/s + 4.038 m/s = 3.846 m/s V2a = U2a + Vcm = 0.158 m/s + 4.038 m/s = 4.196 m/s 4.20 m/s 3.85 m/s

  21. Elastic Collision in the CM: CAPA #6-9 Impulse = mVa – mVb (for each of cars 1 and 2) Note: Impulse on car 1 = - Impulse on car 2.

  22. Next Time • Chapter 7 – Conservation of Momentum. • Quiz on Chapter 7. • Please see me with any questions or comments. See you on Monday.

More Related