560 likes | 655 Views
Universidad de Talca 4ta Jornada de Investigación y Asistencia Técnica. “Systems Biology”: el nuevo Desafío. J.A. Asenjo Centre for Biochemical Engineering and Biotechnology Systems Biology and Cell Dynamics Seminars University of Chile Diciembre 2005.
E N D
Universidad de Talca 4ta Jornada de Investigación y Asistencia Técnica “Systems Biology”:el nuevo Desafío J.A. Asenjo Centre for Biochemical Engineering and Biotechnology Systems Biology and Cell Dynamics Seminars University of Chile Diciembre 2005
We haven’t the money, so we’ve got to think Ernest Lord Rutherford, 1871 - 1937
fermentación levaduras Esterilización (descubrió los microorganismos) (Enzimas) CO2 + H2O azúcar levadura alcohol • Edward Jenner (1749 –1823): “cowpox” – smallpox – Vacuna viruela • 1850 Luis Pasteur: Microorganismos: fermentación no es espontánea • 1928: Alejandro Flemming : Penicilina • 1939: Florey, Chain purificación de penicilina y producción masiva • USA-Pfizer Producción de ácido cítrico • 1945: Premio Nobel: Flemming, Florey, Chain
60’s - 70’s Ingeniería Genética • 80’s INSULINA: Ingeniería genética de E.coli y S.cerevisiae Insulina comercial recombinante • Hoy: Eli-Lilly • Novo-Nordisk • 90’s: tpA • Vacunas: Contra hepatítis B (Merck, Chiron) Sida • 1990 Sally y Dolly • Terapia celular y génica • Enzimas criofílicas
Biotecnología • Nueva Biología Molecular • Proteínas “Clonadas” • Ingeniería de Proteínas • Genómica Funcional • Ingeniería Metabólica (Metabolómica) • Nuevos Productos Terapéuticos • Nuevas Vacunas • Nuevas Enzimas Industriales • Nuevos Microorganismos • Cultivo de Tejidos, Terapia Génica
Inference engine Knowledge base Facts Control Inference Rules Knowledge Expert or Explanation User Working acquisition Knowledge interface subsystem memory subsystem engineer User The architecture of a knowledge based expert system. (taken from Asenjo, Herrera and Byrne, 1989)
V2-V1 RS = V2 V1 ½(W1+W2) Absorbance h = SC a RS DF DF W2 W1 Time SC a RS Determination of the Resolution Between Two Peaks
CHARGE PROPERTY MOLECULAR WEIGHT ISOELECTRIC POINT HYDROPHO- BICITY CONCENTRATION pH 4.0 pH 4.5 . . . . pH 9.5 pH 10.0 PROTEINS PRODUCT CONTAMINANT 1 CONTAMINANT 2 CONTAMINANT 3 CONTAMINANT 4 CONTAMINANT 5 . . . . . . CONTAMINANT N The model of database components for main protein contaminants in one of the production streams to be used in the selection of optimal separation operation
pH 4 Da pH 5 pH 7,5 pH 4,5 pH 5,5 pH 6,5 pH 8 pH 6 pH 8,5 pH 7 g/litre * q I Contaminant q J q G pI 1 hydroph 3 weight Mol wt 2 q A q C q H q B q D q F q E -2.67 Cont_1 18,370 1.94 -0.80 -1.41 0.25 -1.97 -2.33 -2.45 -1.76 4.67 -2.15 11.29 0.71 Cont_2 85,570 2.35 -1.17 -3.64 4.72 -2.17 0.29 -3.24 -3.63 -3.50 -3.68 -2.83 7.06 0.48 53,660 -1.50 0.04 1.83 4.85 0.67 -0.30 -0.65 -0.85 -1.90 -1.34 -0.49 0.76 4.63 Cont_3 -2.75 4.92 -1.73 1.50 5.58 Cont_4 -2.30 -2.85 120,000 -0.03 3.29 -1.34 -0.69 1.38 -1.07 Cont_5 -5.65 5.01 -3.07 4.83 0.36 -2.46 -4.98 203,000 0.04 4.08 -1.17 1.83 -3.90 -1.92 Cont_6 -2.60 -3.90 69,380 -4.24 1.02 5.22 5.16 -0.72 3.17 -3.46 -3.05 -1.90 2.48 0.36 48,320 1.12 3.96 3.16 -0.58 -1.34 -0.95 -1.59 -1.36 Cont_7 -2.84 5.29 -1.00 7.70 0.48 93,380 -4.12 -4.45 -0.81 10.90 5.81 0.77 2.78 -2.18 Cont_8 -4.31 -3.32 5.57 0.93 6.80 * Hydrophobicity expressed as the concentration (M) of ammonium sulphate at which the protein eluted. (Higher values represent lower hydrophobicity). 1 Measured by isoelectric focusing using homogeneous poolyacrylamide gel in Phast System. 2Molecular weight was measured by SDS-PAGE with PhastGel media in Phast System. 3Hydrophobicity was measured by hydrophobic interaction chromatography using a phenyl-superose gel in an FPLC and a gradient elution from 2.0 M to 0.0 M (NH4)2SO4 in 20 mM Tris buffer. 4Charge was measured by electrophoretic titration curve analysis with PhastGel IEF 3-9 in a Phast System. -0.28 -0.21 -0.32 5.65 Cont_9 69,380 1.09 -0.32 0.55 -0.03 0.26 -0.12 0.10 7.53 Cont_10 -1.72 -0.53 6.02 6.05 0.63 -1.43 -0.05 114,450 10.40 3.15 5.94 1.51 -0.99 0.56 Cont_11 198,000 -1.57 0.33 0.03 0.05 0.05 0.05 7.57 -0.69 0.05 3.89 0.06 -0.97 0.05 30,400 0.08 5.17 3.20 4.22 2.25 0.20 0.30 1.46 Cont_12 0.87 8.29 0.50 1.48 Cont_13 0.51 0.80 1.50 8.83 1.97 0.83 94,670 11.70 7.94 5.39 3.73 1.13 2.66 Concentration, molecular weight, hydrophobicity and charge at different pHs, for the main proteins (“contaminants” of the product) in Escherichia coli. Data from Woolston (1994) Charge4 (Coulomb per molecule x 1E25)
B A C S S S b DFi S DFi B B B C A C A A D b´ DFi DFi Representation of the peaks of a chromatogram as triangles, showing how the variation in the value of DF leads to different concentrations of the contaminant protein in the product. The triangle on the left corresponds to the product protein and the triangle of the right corresponds to the peak of the protein being separated (contaminant).
Estructura de las Proteínas • Estructura Primaria: secuencia lineal de aa • Estructura Secundaria: algunos aa interactuan • Estructura Terciaria: cadenas de aa interligadas • Estructura Nativa: proteína se encuentra activa • Proteína denaturada: • No tiene actividad • No posee puentes disúlfuro Producción & Purificación de Proteínas
Proteínas Cuatro niveles de estructura: desde 1 dimensión a 3 dimensiones Desde análisis estructural a análisis funcional
Ingeniería de Proteínas • Proteasas activas a baja temperatura (Criofílicas, Psicrofílicas) • para detergentes • para industria de alimentos • Para aplicaciones médicas
Ingeniería de Proteínas • Estudios de Relación Estructura-Función • Mutagénesis Sitio-Dirigida • Mutagénesis al Azar
MetabolómicaIngeniería Metabólica • Systems Biology: qué viene después de la Genómica • Uso de Análisis de Flujos Metabólicos y Tecnología de Microarrays de Genes
P+ Gluc/Eth
Cultivo de Tejidos- tejidos- células (e.g. sanguíneas)- órganos