1 / 10

3.7 Solving Polynomial Equations

3.7 Solving Polynomial Equations. That is, finding all the roots of P(x) without a head start. Example: Prime factor 10406 What is your process? Why?.

davina
Download Presentation

3.7 Solving Polynomial Equations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 3.7 Solving Polynomial Equations That is, finding all the roots of P(x) without a head start

  2. Example: Prime factor 10406 What is your process? Why?

  3. There are 5 main rules we will use to determine possible rational roots. There are others that you can read about in the book, but these 5 are the basic ones you narrow down the possibilities. Remember: when you divide synthetically, if the remainder = 0 then the number is a root. If the remainder ≠0 then the number is not a root and never will be.

  4. Rule #1 The only possible real rational roots are Where

  5. Rule #2 If the signs of the all the terms in the polynomial are +, then all roots are negative. Think about this, using

  6. Rule #3 If the signs of the terms of the polynomial alternate 1 to 1 (that is + – + – + –) then all the roots are positive. If a term is missing, it is ok to assign it a + or – value to make it fit this rule.

  7. Rule #4 If you add all the coefficients and get 0, then 1 is a root. Otherwise 1 is not a root (and never will be a root ever). This is a good one. Essentially if it works, you have your start point.

  8. Rule #5 Change the signs of the odd powered coefficients and then add. If you get 0, then -1 is a root. Otherwise, -1 is not a root. Sometimes this one isn’t worth the effort.

  9. Why these rules? You will have a list of possibilities (and maybe a definite) with which to start synthetically dividing. Remember – the goal of the problem is to find all zeroes (or factor). A zero is something whose factor divides evenly into a function. Therefore, synthetically you want to get a remainder of 0.

  10. Find zeroes, then factor the following.

More Related