1 / 18

但 X 1 , X 2 相互独立且都服从 N ( m , s 2 ), 因此 X 2 - X 1 ~ N (0,2 s 2 ), 且

证明题 :设总体 X ~ N ( m , s 2 ), X 1 , X 2 是取自 X 的样本 ,  X 是样本均值 , S 2 是样本方差 , 试证明  X 与 S 2 独立 , 且 S 2 / s 2 ~ c 2 (1). 证 :. 但 X 1 , X 2 相互独立且都服从 N ( m , s 2 ), 因此 X 2 - X 1 ~ N (0,2 s 2 ), 且.

Download Presentation

但 X 1 , X 2 相互独立且都服从 N ( m , s 2 ), 因此 X 2 - X 1 ~ N (0,2 s 2 ), 且

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 证明题:设总体X~N(m,s2), X1,X2是取自X的样本, X是样本均值, S2是样本方差, 试证明X与S2独立, 且S2/s2~c2(1).证:

  2. 但 X1,X2相互独立且都服从N(m,s2), 因此X2-X1~N(0,2s2), 且

  3. 要证明S2与X相互独立, 只需要证明(X2-X1)与(X2+X1)相互独立即可, 也就是要证明cov(X2-X1,X2+X1)=0, 因为E(X2-X1)=0, 因此 命题成立.

  4. 证明题:设总体X~N(m,s2), X1,X2,X3是取自X的样本, X是样本均值, S2是样本方差, 试证明X与S2独立, 且2S2/s2~c2(2).证:

  5. 定义 下面要证明 (1) Y1和Y2的均值都是0且方差都是s2, (2) Y1,Y2相互独立, (3) Y1和Y2都与X独立. (4) (5)

  6. (1) Y1和Y2的均值都是0且方差都是s2,

  7. (2) Y1,Y2相互独立,因为各样本相互独立且都服从正态分布, 因此Y1,Y2也是正态变量, 正态变量相互独立的充要条件是它们的协方差等于0.

  8. (2) Y1,Y2相互独立,

  9. Y1和Y2都与X独立,

  10. Y1和Y2都与X独立,

  11. (5)

  12. (5) 而Y1~N(0,s2), Y2~N(0,s2)且相互独立, 则 Y1/s~N(0,1), Y2/s~N(0,1), 因此

More Related