1 / 30

The Octet Rule

The Octet Rule. All atoms “want” a full valence shell of e- This makes them more stable, like the Noble Gases, which have 8e-, a full valence shell. For H and He a full valence shell is 2 e- For all bigger atoms, a full valence shell is 8 e- (hence “octet”).

dbush
Download Presentation

The Octet Rule

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Octet Rule All atoms “want” a full valence shell of e- This makes them more stable, like the Noble Gases, which have 8e-, a full valence shell. For H and He a full valence shell is 2 e- For all bigger atoms, a full valence shell is 8 e- (hence “octet”)

  2. The Octet Rule All atoms “want” their valence shell to mimic a Noble Gas e- configuration: Most chemical reactions are the result of atoms gaining or losing or sharing e- with other atoms in order to have 8 valence e-

  3. Covalent Bonding Definition: two or more atoms sharing valence e- so that each atom has a full valence shell (2 e- for H and He, 8 e- for all bigger atoms) H Cl

  4. Covalent Bonding Definition: two or more atoms sharing valence e- so that each atom has a full valence shell (2 e- for H and He, 8 e- for all bigger atoms) Cl H

  5. When does covalent bonding occur? • Between elements that are non metals • Between two elements with an electronegativity difference of less than 1.7

  6. How do I find the electronegativity difference between 2 atoms? Using Table S, look up the electronegativity values for each atom. Then find the difference by subtracting the smaller value from the bigger value: H = 2.1 Cl = 3.2 Electronagativity difference = 3.2 -2.1 = 1.1 Since 1.1 is less than 1.7, this bond is covalent

  7. Forming a Covalent Bond

  8. Non- polar covalent bonds NON POLAR covalent bonds occur when the electronegativity difference of the two bonded atoms is zero. When does this happen? When the two bonded atoms are identical

  9. Non- polar covalent bonds All Diatomic atoms have non-polar covalent bonds: H2 N2 O2 F2 Cl2 Br2 I2

  10. Non- polar covalent bonds In a non polar covalent bond, the shared electrons are shared equally between both atoms This means they spend equal amounts of time orbiting both nuclei

  11. Double covalent bonds Some atoms can share TWO electrons with another atom. This results in a double bond. O O Each oxygen atom has 6 valence e- By sharing 2 e- pairs, they will each fill their Valence shell with 8 e-

  12. Double covalent bonds O O Double bond Each oxygen atom has 6 valence e- By sharing 2 e- pairs, they will each fill their Valence shell with 8 e-

  13. Lewis dots can get tedious to draw for double bonds, so often the “stick” model is used instead: One represents a shared pair of e- O O

  14. Triple covalent bonds Some atoms, like nitrogen, can form a triple covalent bond with other atoms Each atom shares 3 of its valence e- N N

  15. POLAR covalent bonds Except for diatomic molecules, most covalent bonds are POLAR This means one atom is more electronegative than the other, and the e- are NOT SHARED EQUALLY The e- spend more time near the nucleus of the more electronegative atom

  16. Since Cl is more electronegative than H, The H-CL bond is polar Since the shared e- spend more time near the Cl nucleus, the Cl side of the molecule has a partially negative charge - + H Cl The H side has a partially positive charge The whole molecule is neutral

  17. Water Molecule The water molecule H20 has polar covalent bonds between the O and H. The shape of the molecule is also important: It looks like Mickey Mouse

  18. Water Molecule The Mickey Mouse shape also makes the molecule polar: The O end is partially negative, and the H end partially positive + The bonding e- are called the “shared pairs” The non-bonding e- are called “lone pairs” X X X _

  19. Polar Molecules Just because a molecule contains polar bonds does not mean the molecule itself is POLAR, like water. C=O=C carbon dioxide has polar bonds between C and O but the symmetrical shape eliminates the polarity of the whole molecule

  20. Molecules Atoms bonded together by covalent bonds form MOLECULES Molecules are the smallest discrete particle of an element or compound formed by covalently bonded atoms

  21. Molecules Each atom in a molecule usually has 8 valence e- (a noble gas e- configuration) Covalent molecules make up Molecular Substances Water is a molecular substance

  22. Molecular Substances Properties of molecular substances: • Soft (like butter) • Poor conductors of electricity and heat • Low melting points (melt easily) • Low boiling points (boil easily)

  23. Metallic Bonding

  24. Metallic Bonds Are a special type of bond between metal atoms of the same element These bonds are characterized as: Positive ions (the kernel) immersed in sea of mobile (valence) electrons The kernel is the nucleus and the non-valence e-

  25. Metallic Bond: Positive ions immersed in asea of mobile electrons - - - - + + + - - - - - - - - + + + - - - -

  26. Metallic Bonds The valence e- in a metal bond are free to move between the different atoms. These MOBILE ELECTRONS give metals the ability to conduct electricity and heat Also the metallic properties of malleabilty and ductility

More Related