240 likes | 291 Views
Learn about the key differences between fatty acid breakdown and biosynthesis, the role of enzymes, regulation mechanisms, and the steps involved in fatty acid synthesis. Explore how acetyl-CoA is converted into fatty acids in the cytosol and the crucial regulatory factors affecting this process.
E N D
Fatty Acid Synthesis • In mammals fatty acid synthesis occurs primarily in the liver and adipose tissues • Also occurs in mammary glands during lactation. • Fatty acid synthesis and degradation go by different routes • There are four major differences between fatty acid breakdown and biosynthesis
The differences between fatty acid biosynthesis and breakdown • Intermediates in synthesis are linked to -SH groups of acyl carrier proteins (as compared to -SH groups of CoA) • Synthesis in cytosol; breakdown in mitochondria • Enzymes of synthesis are one polypeptide • Biosynthesis uses NADPH/NADP+; breakdown uses NADH/NAD+
ACP vs. Coenzyme A • Intermediates in synthesis are linked to -SH groups of acyl carrier proteins (as compared to -SH groups of CoA)
Citrate Lyase Citrate synthase Malate dehydrogenase Pyruvate carboxylase Malate Enzyme Fatty Acid Synthesis Occurs in the Cytosol • Must have source of acetyl-CoA • Most acetyl-CoA in mitochondria • Citrate-malate-pyruvate shuttle provides cytosolic acetate units and reducing equivalents for fatty acid synthesis
Fatty Acid Synthesis • Fatty acids are built from 2-C units derived from acetyl-CoA • Acetate units are activated for transfer to growing FA chain by conversion to malonyl-CoA • Decarboxylation of malonyl-CoA and reducing power of NADPH drive chain growth • Chain grows to 16-carbons (eight acetyl-CoAs) • Other enzymes add double bonds and more Cs
Acetyl-CoA Carboxylase Acetyl-CoA + HCO3- + ATP malonyl-CoA + ADP • The "ACC enzyme" commits acetate to fatty acid synthesis • Carboxylation of acetyl-CoA to form malonyl-CoA is the irreversible, committed step in fatty acid biosynthesis
Regulation of Acetyl-CoA Carboxylase (ACCase) • ACCase forms long, active filamentous polymers from inactive protomers • Accumulation of palmitoyl-CoA (product) leads to the formation of inactive polymers • Accumulation of citrate leads to the formation of the active polymeric form • Phosphorylation modulates citrate activation and palmitoyl-CoA inhibition
Regulation of Acetyl-CoA Carboxylase (ACCase) • Unphosphorylated ACCase has low Km for citrate and is active at low citrate • Unphosphorylated ACCase has high Ki for palmitoyl-CoA and needs high palmitoyl-CoA to inhibit • Phosphorylated E has high Km for citrate and needs high citrate to activate • Phosphorylated E has low Ki for palmitoyl-CoA and is inhibited at low palmitoyl-CoA
Fatty Acid Synthesis • Step 1: Loading – transferring acetyl- and malonyl- groups from CoA to ACP • Step 2: Condensation – transferring 2 carbon unit from malonyl-ACP to acetyl-ACP to form 2 carbon keto-acyl-ACP • Step 3: Reduction – conversion of keto-acyl-ACP to hydroxyacyl-ACP (uses NADPH) • Step 4: Dehydration – Elimination of H2O to form Enoyl-ACP • Step 5: Reduction – Reduce double bond to form 4 carbon fully saturated acyl-ACP
Termination of Fatty Acid Synthesis Acyl-CoA synthetase
Organization of Fatty Acid Synthesis Enzymes • In bacteria and plants, the fatty acid synthesis reactions are catalyzed individual soluble enzymes. • In animals, the fatty acid synthesis reactions are all present on multifunctional polypeptide. • The animal fatty acid synthase is a homodimer of two identical 250 kD polypeptides.
Further Processing of Fatty acids: Desaturation and Elongation
Regulation of FA Synthesis • Allosteric modifiers, phosphorylation and hormones • Malonyl-CoA blocks the carnitine acyltransferase and thus inhibits beta-oxidation • Citrate activates acetyl-CoA carboxylase • Fatty acyl-CoAs inhibit acetyl-CoA carboxylase • Hormones regulate ACC • Glucagon activates lipases/inhibits ACC • Insulin inhibits lipases/activates ACC
Allosteric regulation of fatty acid synthesis occurs at ACCase and the carnitine acyltransferase
Glucagon inhibits fatty acid synthesis while increasing lipid breakdown and fatty acid b-oxidation Insulin prevents action of glucagon