1 / 40

Chapter 28 & 30

U O T P. Chapter 28 & 30. 對流質量傳送係數 Convective Mass-Transfer Coefficient. 單 元 操 作. Kc ’ - Mass Transfer Coefficient. c iy. c A1. c A. c A2. z 1. z. z 2. 流動相. 單 元 操 作. kc ’ - Equimolar counter-diffusion. y. y Ai. x Ai. x. interface. Example Evaporizing A.

deacon
Download Presentation

Chapter 28 & 30

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. UOTP Chapter 28 & 30 對流質量傳送係數 Convective Mass-Transfer Coefficient

  2. 單元操作 Kc’-Mass Transfer Coefficient ciy cA1 cA cA2 z1 z z2 流動相

  3. 單元操作 kc’-Equimolar counter-diffusion y yAi xAi x interface

  4. Example Evaporizing A • The liquid A completely wets the surface, witch is a blotting paper. From the surface A is vaporizing though B.PA is 0.2 atm. (ky’= 6.78*10-5kgmole/m2-s) • a) Caculate =? NA ky u B:2atm PA2 =0 2 PA1=0.2atm 1 A 293K

  5. kc of A diffusion through stagnant

  6. Dimension Analysis (momentum, heat, mass ) • Momentum transfer 摩擦力 τw=Fw/A =f (ρ, u, D, μ) 無因次群= f = f( NRe )=f( ) • Heat transfer • Mass transfer (NRe , NSc)

  7. Schmidt Number NSC

  8. Example 28-2

  9. vx Incompressible flow (牛頓流體) Blasius’s solution 連續方程式 動量方程式 Navier-Stokes equation

  10. Analog in heat transfer 能量方程式 Fourier方程式

  11. Analog in mass transfer

  12. UOTP hx &kc over a plate (Laminar Flow) Re=xVρ/μ

  13. hx &kc over a plate (Laminar Flow) Pohlhausen 提出

  14. Example-28-3

  15. 動量、能量及質量輸送之類比 • (1) Reynolds Analog  適用:Pr≈1,Sc≈1

  16. (2) Chilton-Colburn Analog

  17. Examp 28-4

  18. Examp 28-5

  19. Npr & Nsc

  20. kc’ in flow parallel to flate plate Gas Nre<200000 NSh=0.664NReL0.5 NSc1/3 …(28-21) gas JD=NShL/(NRELNSc1/3) ….(30-1) = 0.664NReL0.5 …..(30-2) NA Gas Nre>200000 NSh=0.365NRe0.5 NSc1/3 JD=NShL/(NRELNSc1/3) …..(30-1) = 0.365NReL0.5 …..(30-3) For 0.6<Sc<2500, 0.6<pr<100 J=Cf /2 Liquid or solid

  21. Example-30-1

  22. kc’ in flow through ball • 流過圓球外 u=0 • u>0 for gas u>0 NSh=2.0+C NRem NSc1/3

  23. kc’ in flow through ball • 流過圓球外 • u>0 for gas 1<Nre<48000 • u>0 for liquid 2<Nre<2000 • u>0 for liquid 2000<Nre<17000 NSh=2.0+0. 552NRe0.53 NSc1/3 …(30-9) NSh=2.0+0. 95NRe0.5 NSc1/3 u>0 NSh=2.0+0. 347NRe0.62 NSc1/3

  24. Example-30-2

  25. Examp • Air u=0.305 m/s • Mass transfer from C10H8 spheres to air • Dp=25.4mm ,T=45℃,DAB=6.92*10-6m2/s • PA0=0.555mmHg

  26. 單元操作 比較 管外流體熱傳(強制流動) • 因次分析 許多實驗式可查 • 垂直流過水平管外(適用液體&NRe=1~104之氣體) NNu x NPr–0.3 =0.35+ 0.56NRe0.52 • 流過一球體 NNu = 2.0+ 0. 6 NRe0.50 NPr1/3

  27. kc’ in flow outside tube • 垂直流過水平管外 NSh NSc-0.3=0.35+0.56NRe0.52

  28. vx CA CA0 CAi r2 A kc’ in laminar flow inside tube • 流經圓管內 L

  29. 2. NSh=0.023NRe0.8NSc1/3( )0.14 kc’ in turbulent flow inside tube • 流經圓管內 or vx CA CA0 CAi r2 A

  30. kc’ in laminar flow in wet-wall tube x • 流經濕壁塔 y u NAx falling film CA flow inside tube δ

  31. Example-30-4

  32. kc’ in flow through packed tower • 流過填充塔 • bed of spheres CA2 CA1

  33. kc’ in flow through packed tower • 流過填充塔 • bed of spheres Gas 10<Nre<10000 , liq 10<Nre<1500 v’ 氣體在空管之速度 JD= JH =(0.4548/ε)NRe-0.4069 liq 0.0016<Nre<55 165<Nsc<70000 JD= JH =(1.09/ε)NRe -2 /3 liq 55<Nre<1500 165<Nsc<10690 JD= JH =(0.25/ε)NRe –0.31

  34. kc’ in flow through packed tower • 流過填充塔 • bed of non-spheres Raschig Ring CA2 Lessing Ring CA1

  35. NA in flow through fluidize bed • 流過流體化床 Gas , liq 10<Nre<4000 v’ 氣體在空管之速度 JD= JH =(0.4548/ε)NRe-0.4069 liq 1<Nre<10 JD= JH =(1.1068/ε)NRe –0.72

  36. Examp 28-o1 • Dtower =0.0667m • C6H5COOH spheres Dp=6.375mm • Water 26.1℃ Q=5.514*10-7m3/s • Particles ε=0.435 surface area A=0.01198m2 • v’ =(5.514*10-7m3/s)/((π/4)Dtower 2) • 求kc • CA2

  37. NA to small particles(1) • Dp<0.6mm(600μm) • Gas bubbles or liq drops Dp>2.5mm Gas bubbles in liq Or solid particles in liq cA1 Diffusion free fall or rise by gravity

  38. Examp 28-o2 • Dp =100μm of air bubble 1 atm 37℃ • The solubity of O2 from air in water =2.26 kgmole/m3 • Dv of O2 in water is =3.2510-9m2/s • 求NA =kL (cAi -cA) =kc (cA - cAi)

  39. NA to small particles(2) • In high turbulent mixer Turbulent force larger than gravity

More Related