1 / 6

You’re Quite Impulsive

You’re Quite Impulsive. An Introduction to Impulse and Momentum. A Review of What We Know About Motion. Chapters 2 & 3 introduced us to vectors such as displacement, velocity, and acceleraton No mass was included Chapter 4 introduced forces and mass into the mix.

deana
Download Presentation

You’re Quite Impulsive

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. You’re Quite Impulsive An Introduction to Impulse and Momentum

  2. A Review of What We Know About Motion Chapters 2 & 3 introduced us to vectors such as displacement, velocity, and acceleraton No mass was included Chapter 4 introduced forces and mass into the mix Chapter 5 has brought the concept of energy to motion. It includes mass and motion but not as vectors Chapter 6 will combine the vectors of motion with mass quantities

  3. Where (and why) We Start Vector Motion Energy Analysis A ball is thrown up at 25m/s at 53o above horizontal. Find final velocity. How we solve: Strengths: Weaknesses: A ball is thrown up at 25m/s at 53o above horizontal. Find final velocity. How we solve: Strengths: Weaknesses:

  4. How we can combine both strengths We need a quantity that expresses motion with a mass component and a directional component. Welcome to the world of impulse and momentum! Impulse: force times time- force is a vector; time is not. It expresses an effort and duration. Units are Ns or kgm/s Momentum: mass times velocity- mass is scalar; velocity is vector. It includes direction and size. Units are kgm/s or Ns.

  5. As an object moves with a velocity it has a “quantity” of motion that relates to its size and motion. This is momentum (m x v) • Newton’s 2nd law tells us that an outside force will create a proportional velocity change. • The longer the force acts the more the change in velocity. • So, the force acting for a time creates a m-v (momentum) change. How Momentum and Impulse relate Momentum= mass x velocity Velocity changes are expressed as accelerations: acc = Dv/Dt Accelerations are created by forces acting on masses The “longer” the force acts the more the object accelerates Force = mass x (Dv / Dt) After a little algebra Force x Dt = mass x Dv Impulses create momentum changes

  6. A Few Examples If a 25.0 kg cart rolls at 15 m/s east and a 200. N force (west) acts on it for 30.0 seconds, (a) what is its initial momentum and kinetic energy? (b) what is its final momentum, velocity and kinetic energy? A 50.0 kg object travels at 30.0 m/s east. A 100.0 N (south) force acts on the object for 15.0 seconds. (a) What is its final momentum? What is its final velocity? What is its final kinetic energy?

More Related