1 / 46

Mealy machine

Mealy machine. O. I. LOGIC. STATE. S init. I. LOGIC. STATE. LOGIC. O. S init. Moore machine. FFNN. Recurrent Neural Net. y. STATE. x. Recurrent Networks. A recurrent network is characterized by

Download Presentation

Mealy machine

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mealy machine O I LOGIC STATE Sinit Rudolf Mak TU/e Computer Science

  2. I LOGIC STATE LOGIC O Sinit Moore machine Rudolf Mak TU/e Computer Science

  3. FFNN Recurrent Neural Net y STATE x Rudolf Mak TU/e Computer Science

  4. Recurrent Networks • A recurrent network is characterized by • The connection graph of the network has cycles, i.e. the output of a neuron can influence its input • There are no natural input and output nodes • Initially each neuron has a given input state • Neurons change state using some update rule • The network evolves until some stable situation is reached • The resulting state is the output of the network Rudolf Mak TU/e Computer Science

  5. Pattern Recognition • Recurrent networks can be used for pattern • recognition in the following way: • The stable states represent the patterns to • be recognized • The initial state is a noisy or otherwise • mutilated version of one of the patterns • The recognition process consists of the • network evolving from its initial state to a • stable state Rudolf Mak TU/e Computer Science

  6. Pattern Recognition Example Rudolf Mak TU/e Computer Science

  7. Pattern Recognition Example (cntd) Noisy image Recognized pattern Rudolf Mak TU/e Computer Science

  8. Bipolar Data Encoding • In bipolar encoding firing of a neuron is repre-sented by the value 1, and non-firing by the value –1 • In bipolar encoding the transfer function of the neurons is the sign function sgn • A bipolar vector x of dimension n satisfies the equations • sgn(x) = x • xTx = n Rudolf Mak TU/e Computer Science

  9. Binary versus Bipolar Encoding • The number of orthogonal vector pairs is much • larger in case of bipolar encoding. In an even n- • dimensional vector space: • For binary encoding • For bipolar encoding Rudolf Mak TU/e Computer Science

  10. Hopfield Networks • A recurrent network is a Hopfield network when • The neurons have discrete output (for conve-nience we use bipolar encoding, i.e., activation function is the sign function) • Each neuron has a threshold • Each pair of neurons is connected by a weighted connection. The weight matrix is symmetric and has a zero diagonal (no connection from a neuron to itself) Rudolf Mak TU/e Computer Science

  11. Network states If a Hopfield network has n neurons, then the state of the network at time t is the vector x(t) 2 {-1, 1}n with components x i (t) that describe the states of the individual neurons. Time is discrete, so t2N The state of the network is updated using a so-called update rule. (Not) firing of a neuron at time t+1 will depend on the sign of the total input at timet Rudolf Mak TU/e Computer Science

  12. Update Strategies • In a sequential network only one neuron at a time is allowed to change its state. In the asyn-chronous update rule this neuron is randomly selected. • In a parallel network several neurons are allowed to change their state simultaneously. • Limited parallelism: only neurons that are not connected can change their state simultaneously • Unlimited parallelism: also connected neurons may change their state simultaneously • Full parallelism: all neurons change their state simul-taneously Rudolf Mak TU/e Computer Science

  13. Asynchronous Update Rudolf Mak TU/e Computer Science

  14. Asynchronous Neighborhood The asynchronous neighborhood of a state x is defined as the set of states Because wkk = 0 , it follows that for every pair of neighboring states x*2Na(x) Rudolf Mak TU/e Computer Science

  15. Synchronous Update This update rule corresponds to full parallelism Rudolf Mak TU/e Computer Science

  16. Sign-assumption In order for both update rules to be applica-ble, we assume that for all neurons i Because the number of states is finite, it is always possible to adjust the thresholds such that the above assumption holds. Rudolf Mak TU/e Computer Science

  17. Stable States A state x is called a stable state, when For both the synchronous and the asyn-chronous update rule we have: a state is a stable state if and only if the update rule does not lead to a different state. Rudolf Mak TU/e Computer Science

  18. 1 1 1 -1 1 -1 -1 1 1 Cyclic behavior in asymmetric RNN 1 1 -1 -1 -1 1 Rudolf Mak TU/e Computer Science

  19. Basins of Attraction stable state initial state state space Rudolf Mak TU/e Computer Science

  20. Consensus and Energy The consensus C(x) of a state x of a Hopfield network with weight matrix W and bias vector b is defined as The energy E(x) of a Hopfield network in state x is defined as Rudolf Mak TU/e Computer Science

  21. Consensus difference For any pair of vectors x and x* 2Na(x) we have Rudolf Mak TU/e Computer Science

  22. Asynchronous Convergence If in an asynchronous step the state of the network changes from x to x-2xkek, then the consensus increases. Since there are only a finite number of states, the consensus serves as a variant function that shows that a Hopfield network evolves to a stable state, when the asynchronous update rule is used. Rudolf Mak TU/e Computer Science

  23. Stable States and Local maxima A state x is a local maximum of the consensus function when Theorem: A state x is a local maximum of the consensus function if and only if it is a stable state. Rudolf Mak TU/e Computer Science

  24. Stable equals local maximum Rudolf Mak TU/e Computer Science

  25. Modified Consensus The modified consensus of a state x of a Hopfield network with weight matrix W and bias vector b is defined as Let x,x*, and x** be successive states obtained with the synchronous update rule. Then Rudolf Mak TU/e Computer Science

  26. Synchronous Convergence Suppose that x, x*, and x** are successive states obtained with the synchronous update rule. Then Hence a Hopfield network that evolves using the synchronous update rule will arrive either in a stable state or in a cycle of length 2. Rudolf Mak TU/e Computer Science

  27. Storage of a Single Pattern How does one determine the weights of a Hopfield network given a set of desired sta- ble states? First we consider the case of a single stable state. Let x be an arbitrary vector. Choos-ing weight matrix W and bias vector b as makes x a stable state. Rudolf Mak TU/e Computer Science

  28. Proof of Stability Rudolf Mak TU/e Computer Science

  29. Hebb’s Postulate of Learning • Biological formulation • When an axon of cell A is near enough to excite a cell and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency as one of the cells firing B is increased. • Mathematical formulation Rudolf Mak TU/e Computer Science

  30. Hebb’s Postulate: revisited • Stent (1973), and Changeux and Danchin (1976) • have expanded Hebb’s rule such that it also mo- • dels inhibitory synapses: • If two neurons on either side of a synapse are activated simultaneously (synchronously), then the strength of that synapse is selectively increased. • If two neurons on either side of a synapse are activated asynchronously, then that synapse is selectively weakened or eliminated. Rudolf Mak TU/e Computer Science

  31. Example Rudolf Mak TU/e Computer Science

  32. State encoding Rudolf Mak TU/e Computer Science

  33. Finite state machine for async update Rudolf Mak TU/e Computer Science

  34. Weights for Multiple Patterns Let {x(p)j 1 ·p·P } be a set of patterns, and let W(p) be the weight matrix corresponding to pattern number p. Choose the weight matrix W and the bias vector b for a Hopfield network that must recognize all P patterns as Question: Is x(p) indeed a stable state? Rudolf Mak TU/e Computer Science

  35. Remarks • It is not guaranteed that a Hopfield network with weight matrix as defined on the previous slide indeed has the patterns as it stable states • The disturbance caused by other patterns is called crosstalk. The closer the patterns are, the larger the crosstalk is • This raises the question how many patterns there can be stored in a network before crosstalk gets the overhand Rudolf Mak TU/e Computer Science

  36. Weight matrix entry computation Rudolf Mak TU/e Computer Science

  37. Input of neuron i in state x(p) Rudolf Mak TU/e Computer Science

  38. Neuron i is stable when , because Crosstalk The crosstalk term is defined by Rudolf Mak TU/e Computer Science

  39. Spurious States • Besides the desired stable states the network can • have additional undesired (spurious) stable states • If x is stable and b=0, then –x is also stable. • Some combinations of an odd number of stable states can be stable. • Moreover there can be more complicated additional stable states (spin glass states) that bare no relation to the desired states. Rudolf Mak TU/e Computer Science

  40. Storage Capacity Question: How many stable states P can be stored in a network of size n ? Answer: That depends on the probability of instability one is willing to accept. Experi- mentally P¼ 0.15n has been found (by Hopfield) to be a reasonable value. Rudolf Mak TU/e Computer Science

  41. Then it can be shown that has ap- proximately the standard normal distribu- tion N(0, 1). Probabilistic analysis 1 Assume that all components of the patterns are random variables with equal probability of being 1 and -1 Rudolf Mak TU/e Computer Science

  42. Normal distribution Rudolf Mak TU/e Computer Science

  43. Probabilistic Analysis 2 From these assumptions it follows that Application of the central limit theorem yields Rudolf Mak TU/e Computer Science

  44. Standard Normal Distribution The shaded area under the bell-shaped curve gives the probability Pr[y¸ 1.5] Rudolf Mak TU/e Computer Science

  45. Probability of Instability Rudolf Mak TU/e Computer Science

  46. Topics Not Treated • Reduction of crosstalk for correlated patterns • Stability analysis for correlated patterns • Methods to eliminate spurious states • Continuous Hopfield models • Different associative memories • Binary Associative Memory (Kosko) • Brain State in a Box (Kawamoto, Anderson) Rudolf Mak TU/e Computer Science

More Related