1 / 8

전자 전기 공학과 최선미

전자 전기 공학과 최선미. Example 9.2 a) Solve. using the forward Euler method using h=0.01 for o this part by hand calculation.

debra
Download Presentation

전자 전기 공학과 최선미

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 전자 전기 공학과 최선미 Example 9.2 a) Solve using the forward Euler method using h=0.01 for o this part by hand calculation. b) Repeat the same for h=0,01,0,001,0,0001 on a computer for Evaluate errors of the three calculations by comparison to the analytical solution given by The Exact Solution is

  2. REAL T,Y,H,EXACT,Error PARAMETER(U=20) PRINT *,'ODE BY Forword EULER METHOD' DATA T,Y,H /0.0,5.0,0.01/ PRINT *,' T Y EXAXCT ERROR' 1 FORMAT(F10.5,F10.5,F10.5,F10.5) OPEN(U,FILE='ANSWER1.TXT') WRITE(U,*)'ODE BY Forword EULER METHOD' WRITE(U,*)' T Y EXACT ERROR' WRITE(U,*)'--------------------------------------------' DO 10 N=1,9 Y=Y+H*(7*EXP(-0.5*T)-20*Y) T=T+H EXACT=5*EXP(-20*T)+7/19.5*(EXP(-0.5*T)-EXP(-20*T)) Error=Y-EXACT PRINT 1,T,Y,EXACT,Error WRITE(U,1)T, Y,EXACT,Error 10 CONTINUE STOP END

  3. ODE BY Forword EULER METHOD T Y EXACT ERROR -------------------------------------------- 0.01000 4.07000 4.15693 -0.08693 0.02000 3.32565 3.46637 -0.14072 0.03000 2.72982 2.90068 -0.17085 0.04000 2.25282 2.43721 -0.18440 0.05000 1.87087 2.05745 -0.18658 0.06000 1.56497 1.74622 -0.18125 0.07000 1.31990 1.49109 -0.17119 0.08000 1.12352 1.28191 -0.15839 0.09000 0.96607 1.11034 -0.14427 Forward Euler dt=0.01) Forward Euler dt=0.001) Forward Euler dt=0.0001) ODE BY Forword EULER METHOD T Y EXACT ERROR -------------------------------------------- 0.00100 4.90700 4.90792 -0.00092 0.00200 4.81586 4.81766 -0.00181 0.00300 4.72653 4.72919 -0.00266 0.00400 4.63899 4.64246 -0.00347 0.00500 4.55320 4.55745 -0.00425 0.00600 4.46912 4.47412 -0.00500 0.00700 4.38671 4.39243 -0.00572 0.00800 4.30595 4.31236 -0.00641 0.00900 4.22681 4.23387 -0.00707 0.01000 4.14924 4.15693 -0.00769 0.01100 4.07322 4.08152 -0.00830 0.01200 3.99872 4.00759 -0.00887 0.01300 3.92570 3.93512 -0.00942 0.01400 3.85414 3.86408 -0.00994 0.01500 3.78401 3.79445 -0.01044 0.01600 3.71528 3.72619 -0.01091 0.01700 3.64792 3.65928 -0.01136 0.01800 3.58190 3.59369 -0.01179 0.01900 3.51720 3.52940 -0.01220 0.02000 3.45379 3.46637 -0.01259 0.02100 3.39164 3.40460 -0.01295 0.02200 3.33074 3.34404 -0.01330 0.02300 3.27104 3.28467 -0.01363 0.02400 3.21254 3.22648 -0.01394 0.02500 3.15521 3.16944 -0.01423 ODE BY Forword EULER METHOD T Y EXACT ERROR -------------------------------------------- 0.00010 4.99070 4.99071 -0.00001 0.00020 4.98142 4.98144 -0.00002 0.00030 4.97216 4.97218 -0.00003 0.00040 4.96291 4.96295 -0.00004 0.00050 4.95368 4.95373 -0.00005 0.00060 4.94448 4.94453 -0.00006 0.00070 4.93529 4.93535 -0.00006 0.00080 4.92612 4.92619 -0.00007 0.00090 4.91696 4.91705 -0.00008 0.00100 4.90783 4.90792 -0.00009 0.00110 4.89871 4.89882 -0.00010 0.00120 4.88962 4.88973 -0.00011 0.00130 4.88054 4.88066 -0.00012 0.00140 4.87148 4.87160 -0.00013 0.00150 4.86243 4.86257 -0.00014 0.00160 4.85341 4.85355 -0.00014 0.00170 4.84440 4.84455 -0.00015 0.00180 4.83541 4.83557 -0.00016 0.00190 4.82644 4.82661 -0.00017 0.00200 4.81749 4.81766 -0.00018 0.00210 4.80855 4.80874 -0.00019 0.00220 4.79963 4.79983 -0.00020 0.00230 4.79073 4.79094 -0.00020 0.00240 4.78185 4.78206 -0.00021 0.00250 4.77299 4.77321 -0.00022

  4. By using Fortran

  5. All Figure Error By using Fortran

  6. Forward Euler dt=0.01) Forward Euler dt=0.001) By explicit Euler dt=0.0005) By explicit Euler dt=0.0001) By explicit Euler dt=0.0001) Forward Euler dt=0.0001) By using Mathematica

  7. All Figure Error By using Mathematica

More Related