370 likes | 569 Views
第 5 章 性别决定与 伴性遗传. 第一节、性染色体与性别决定 第二节、伴性遗传 第三节、遗传的染色体学说的直接证明. 第一节、性染色体与性别决定. ( 一 ) 、性染色体 性染色体 (sex chromosome) 成对染色体中直接与性别决定有关的一个或一对染色体。 成对性染色体往往是异型的:形态、结构、大小、功能上都有所不同。 常染色体 (autosome, A) 同源染色体是同型的。 例:果蝇 ( Drosophila melangaster , 2n=8) 染色体组成与性染色体。. 雄杂合型 (XY 型 ) : 两种性染色体分别为 X 、 Y ;
E N D
第5章性别决定与伴性遗传 第一节、性染色体与性别决定 第二节、伴性遗传 第三节、遗传的染色体学说的直接证明 Genetics
第一节、性染色体与性别决定 (一)、性染色体 • 性染色体(sex chromosome) • 成对染色体中直接与性别决定有关的一个或一对染色体。 • 成对性染色体往往是异型的:形态、结构、大小、功能上都有所不同。 • 常染色体(autosome, A) • 同源染色体是同型的。 • 例:果蝇(Drosophila melangaster, 2n=8)染色体组成与性染色体。
雄杂合型(XY型): 两种性染色体分别为X、Y; 雄性个体的性染色体组成为XY(异配子性别),产生两种类型的配子,分别含X和Y染色体; 雌性个体则为XX(同配子性别),产生一种配子,含X染色体。 性比一般是1 : 1。 (二)、性染色体决定性别的方式 The traditional human karyotypes derived from a normal female and a normal male.
The Lygaeus (拉步甲) mode of sex determination, where the heterogametic sex is XY and produces gametes with either an X or a Y chromosome.
XO型: 与XY型相似,但只有一条性染色体X; 雄性个体只有一条X染色体(XO,不成对),它产生含X染色体和不含性染色体两种类型的配子; 雌性个体性染色体为XX。 如:蝗虫、蟋蟀。 (二)、性染色体决定性别的方式
The Protenor mode of sex determination where the heterogametic sex is XO and produces gametes with or without the X chromosome.
(二)、性染色体决定性别方式 3.雌杂合型(ZW型): • 两种性染色体分别为Z、W染色体; • 雌性个体性染色体组成为ZW(异配子性别),产生两种类型的配子,分别含Z和W染色体; • 雄性个体则为ZZ(同配子性别),产生一种配子含Z染色体。 • 性比一般是1 : 1。 • 蛾类、蝶类,鸡鸭等
*(三)、性别决定畸变 • 果蝇性别决定畸变——果蝇的性别决定与Y染色体有无与数目无关,而是由X染色体与常染色体的组成比例决定。其中: X : A = 1 雌性X : A = 0.5 雄性 • X : A大于1的个体将发育成超雌性,小于0.5时发育成超雄性,介于两者则为间性(inter sex);并伴随着生活力、育性下降。
*(三)、性别决定畸变 人类性别决定畸变: • 人类也存在由于性染色体组成异常而产生的性别畸变现象,对这些畸变现象的研究表明: • 与果蝇不同,人类的性别主要取决于是否存在Y染色体。 • 几种常见的畸变现象: • XO: 表现为女性,但出现唐纳氏(Turner’s)综合症; • XXY: 表现为男性,但出现克氏(Klinefelter’s)综合症; • XYY: 表现为男性。
*(四)、其它类型的性别决定 1. 染色体倍数性决定 • 蜜蜂等膜翅目的昆虫:性别取决于染色体的倍数性,并受到环境影响。 • 雄蜂为单倍体,孤雌生殖产生,形成配子时不进行减数分裂; • 雌蜂(蜂王)为二倍体,受精卵发育而来,并在幼虫期得到足够的蜂王浆(5天);如果幼虫期仅得到2-3天蜂王浆则发育为工蜂。
*(四)、其它类型的性别决定 2. 植物性别决定 • 对于植物而言,存在性染色体决定个体性别的类型,如雌雄异株的蛇麻XY型性别决定),蛇麻属于雌性XX型和雄性XY型. • 也可能是由少数几对等位基因控制的个体性别。例如: • 正常情况下玉米为雌雄同株异花。 • Ba基因突变会导致雌花序不能正常发育形成; • Ts基因突变会导致雄花序不能正常发育(发育成顶端雌花序)。
第二节、伴性遗传 • 伴性遗传(sex-linked inheritance) :也称为性连锁(sex linkage),指位于性染色体上的基因所控制的某些性状总是伴随性别而遗传的现象;特指X或Z染色体上基因的遗传。 • 1910年摩尔根等在研究果蝇性状遗传时最先发现性连锁现象,研究结果同时还最终证明了基因位于染色体上。 • 果蝇的眼色不仅受pr+/pr基因控制(红眼对紫眼显性);还受另一对基因W/w控制(红眼对白眼为显性)。
(一)、果蝇眼色基因W/w的遗传 • 果蝇眼色:红眼(W)对白眼(w)为显性; P: 红眼(♀) × 白眼(♂) ↓ ↓ F1: 红眼(♀) × 红眼(♂) ↓ F2: ¾ 红眼 : ¼ 白眼 (♀/♂) (♂) • 解释:眼色基因(W, w)位于X染色体上,而Y染色体上没有决定眼色的基因,XwY的表现型为白眼。
(一)、果蝇眼色基因W/w的遗传 • 果蝇眼色:红眼(W)对白眼(w)为显性; P: 红眼(♀) × 白眼(♂) ↓ F1: 红眼(♀) × 红眼(♂) ↓ F2: ¾ 红眼 : ¼ 白眼 (♀/♂) (♂) • 解释:眼色基因(W, w)位于X染色体上,而Y染色体上没有决定眼色的基因,XwY的表现型为白眼。
为了证明F1中雌果蝇从父本得到的是带w基因的X染色体(Xw);摩尔根等进行了下述测交试验:为了证明F1中雌果蝇从父本得到的是带w基因的X染色体(Xw);摩尔根等进行了下述测交试验: 以F1中的雌性果蝇为母本; 表型为白眼的雄果蝇为父本。 测交结果(Ft表现): F1 测交亲本 红眼(♀)×白眼(♂) (XWXw) (XwY) ↓ Ft ¼ 红眼(♀)(XWXw) ¼ 红眼(♂)(XWY) ¼ 白眼(♀)(XwXw) ¼ 白眼(♂)(XwY) 果蝇眼色的测交试验
人类X染色体性连锁遗传 位于X染色体上的基因的遗传均会表现出类似果蝇眼色基因W/w的遗传现象; 例如:红绿色盲、A型血友病等。 ZW性别决定型的Z染色体性连锁遗传。 与X染色体上基因的遗传非常相似; 只是在与性别关系上是相反的。 例:鸡的芦花条纹遗传。 (二)、其它物种的性连锁遗传
(二)、其它物种的性连锁遗传 • 人类的色盲遗传 • 人类的色盲遗传是性连锁的,已知控制色盲的基因是隐性c,位于X染色体上,Y上不携带其等位基因。 • XCXC, XC Xc , XC Y不色盲 • XcXc 色盲 • XcY 色盲 • 如果母亲色盲而父亲正常,则儿子必是色盲,女儿表现正常。 • 如果父亲色盲而母亲正常,则儿女均表现正常。(如图)
(二)、其它物种的性连锁遗传 • 卢花鸡的毛色遗传也是性连锁 • 卢花基因B对非卢花基因b为显性,Bb这对基因位于z染色体上而W染色体上不含有它的等位基因。 • 以雌芦花鸡(ZBW)与非芦花鸡雄鸡(ZbZb)杂交,F1公鸡的羽毛全是芦花,而母鸡全是非芦花 • 如果进行反交, 以非芦花雌鸡(ZbW)作母本与芦花雄鸡(ZBZB)杂交,F1公鸡和母鸡的羽毛全是芦花。(如图)
(三)、限性遗传 • 限性遗传(sex-limited inheritance): • 指位于Y/W染色体上基因所控制的性状,它们只在异配性别上表现出来的现象。 • 位于Y/W染色体上的基因(限性遗传): • 由于Y/W染色体仅在异配性别中出现,因此其上基因仅在异配性别中才可能表现,并且无论显性基因还是隐性基因都会得到表现。 • 位于X/Z染色体上的基因(伴性遗传): • 在同配性别中总是成对存在,并可能存在显性纯合-杂合-隐性纯合三种情况,隐性基因可能不能表现出来; • 在异配性别中成单存在,无论显隐性也会直接表现出来。
(四)、从性遗传 • 从性遗传(sex-controlled inheritance):也称为性影响遗传(sex-influenced inheritance):控制性状的基因位于常染色体上,但其性状表现受个体性别影响的现象。 • 从性遗传的实质是常染色体上基因所控制的性状受到性染色体遗传背景和生理环境(内分泌等因素)的影响。 • 例:绵羊角的遗传
绵羊角的从性遗传 • 而H/h基因位于常染色体上。
第三节 染色体学说的直接证据 • 布里吉斯(Bridges, C) 发现X染色体的不分离现象
第三节 染色体学说的直接证据 • 布里吉斯将白眼(XwXw)雌蝇和红眼(X+Y)雄蝇杂交时大部分后代是红眼雌蝇、白眼雄蝇,这与摩尔根实验的结果完全相同,但有1/ 2000的后代出现了意外的情况:红眼不育的雄蝇和白眼可育的雌蝇。他称其为初级例外后代(primary exceptional progeny)。 • 他又进一步把初级例外的雌蝇和正常红眼雄蝇进行杂交,结果约4%的后代是白眼雌蝇和可育的红眼雄蝇,他称其为次级例外,这是怎样发生的呢?
P 白眼♀ × 红眼♂ (Xw Xw ) (X+Y) 红眼♀ 白眼♂ 红眼不育♂ 白眼♀×红眼♂ 正常 初级例外 (X+Y) 红眼♀ 白眼♂ 红眼可育♂ 白眼♀ 96%正常 4%次级例外 果蝇眼色遗传的初级例外和次级例外
第三节 染色体学说的直接证据 • 布里吉斯假设可能在雌蝇减数分裂时存在Xw染色体不分离的现象,同趋于一极,那么有一个子细胞中将有2条Xw染色体,而另一个子细胞中却没有X染色体;而雄蝇都能减数分裂,是正常的,这种异常的卵和正常的精子结合的结果有4种可能(图):XwXwX+、单个Y、单个X+♂、和XwXwY♀,前二者不能成活,后两者即是红眼雄蝇和白眼雌蝇,这就是次级例外。 • 通过细胞学研究,果然红眼雄蝇只有一条X染色体,而白眼雌蝇有两条X染色体和另一条Y染色体,验证了布里吉斯的假设。
第三节 染色体学说的直接证据 • 布里吉斯对唯一可育的初级例外(XXY)的减数分裂又提出了推理(图),分析有三种不同的分离类型,有84%是X-X染色体配对,然后相互分离,Y染色体随机地趋向一极;有16%的细胞是X-Y染色体配对,然后相互分离,游离的Xw染色体也随机地移向两极,因此有一半(8%)将形成XwY和Xw型的子细胞。
第三节 染色体学说的直接证据 • 按这个假设初级例外形成的6种配子和正常的红眼雄蝇产生的两种精子杂交,将产生92%的正常后代和4%的次级例外(图)。实际结果: • 红眼雌蝇 27679只 + 白眼雄蝇 28887只 = 95.7% • 白眼雌蝇 1224只 + 红眼雄蝇 1246只 = 4.3% • 从比例上完全符合预料的结果。 • 布里吉斯的模型比其它模型更具有说服力,他假设基因w和W在X染色体上,而且很好地解释了初级例外和次级例外。
布里吉斯的模型是受到了精确的检验的 : • 1、初级后代的细胞学研究表明雌性为XXY,雄性为XO,证实了布里吉斯的推论, • 2、次级后代的细胞学研究表明雌性为XXY,雄性为XY,和推理相符。 • 3、例外白眼雌蝇的红眼女儿一半为XXY,一半为XX,和镜检结果一致。 • 4、例外白眼雌蝇的白眼儿子中也将产生例外的后代,这些白眼儿子都是XYY,这也同样得到了证实。
布里吉斯的实验最终将W/W+基因定位在X染色体上,为遗传的染色体学说提供了有力而直接的证据,使遗传学向前迈出了重要的一步。布里吉斯的实验最终将W/W+基因定位在X染色体上,为遗传的染色体学说提供了有力而直接的证据,使遗传学向前迈出了重要的一步。