1 / 23

Pertemuan 2 1 dan 22 Analisis Regresi dan Korelasi Sederhana

Pertemuan 2 1 dan 22 Analisis Regresi dan Korelasi Sederhana. Matakuliah : I0284 - Statistika Tahun : 200 8 Versi : Revisi. Learning Outcomes. Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu :

deiondre
Download Presentation

Pertemuan 2 1 dan 22 Analisis Regresi dan Korelasi Sederhana

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pertemuan 21 dan 22Analisis Regresi dan Korelasi Sederhana Matakuliah : I0284 - Statistika Tahun : 2008 Versi : Revisi

  2. Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : • Mahasiswa akan dapat menghitung dugaan parameter regresi sederhana, korelasi dan menguji keberartiannya.

  3. Outline Materi • Estimasi koefisien regresi • Inferensia parameter regresi • Koefisien korelasi • Koefisien determinasi • Inferesia koefisien korelasi

  4. Persamaan Regresi • Persamaan matematika yang memungkinkan kita meramalkan nilai-nilai peubah tak bebas dari nilai-nilai satu atau lebih peubah bebas disebut Persamaan Regresi • Persamaan Regresi Sederhana:

  5. Testing for Significance • To test for a significant regression relationship, we must conduct a hypothesis test to determine whether the value of b1 is zero. • Two tests are commonly used • t Test • F Test • Both tests require an estimate of s2, the variance of e in the regression model.

  6. Testing for Significance • An Estimate of s2 The mean square error (MSE) provides the estimate of s2, and the notation s2 is also used. s2 = MSE = SSE/(n-2) where:

  7. Testing for Significance • An Estimate of s • To estimate s we take the square root of s 2. • The resulting s is called the standard error of the estimate.

  8. Testing for Significance: t Test • Hypotheses H0: 1 = 0 Ha: 1 = 0 • Test Statistic • Rejection Rule Reject H0 if t < -tor t > t where tis based on a t distribution with n - 2 degrees of freedom.

  9. Contoh Soal: Reed Auto Sales • t Test • Hypotheses H0: 1 = 0 Ha: 1 = 0 • Rejection Rule For  = .05 and d.f. = 3, t.025 = 3.182 Reject H0 if t > 3.182 • Test Statistics t = 5/1.08 = 4.63 • Conclusions Reject H0

  10. Confidence Interval for 1 • We can use a 95% confidence interval for 1 to test the hypotheses just used in the t test. • H0 is rejected if the hypothesized value of 1 is not included in the confidence interval for 1.

  11. Confidence Interval for 1 • The form of a confidence interval for 1 is: where b1 is the point estimate is the margin of error is the t value providing an area of a/2 in the upper tail of a t distribution with n - 2 degrees of freedom

  12. Contoh Soal: Reed Auto Sales • Rejection Rule Reject H0 if 0 is not included in the confidence interval for 1. • 95% Confidence Interval for 1 = 5 +- 3.182(1.08) = 5 +- 3.44 / or 1.56 to 8.44/ • Conclusion Reject H0

  13. Testing for Significance: F Test • Hypotheses H0: 1 = 0 Ha: 1 = 0 • Test Statistic F = MSR/MSE • Rejection Rule Reject H0 if F > F where F is based on an F distribution with 1 d.f. in the numerator and n - 2 d.f. in the denominator.

  14. Example: Reed Auto Sales • F Test • Hypotheses H0: 1 = 0 Ha: 1 = 0 • Rejection Rule • For  = .05 and d.f. = 1, 3: F.05 = 10.13 • Reject H0 if F > 10.13. • Test Statistic • F = MSR/MSE = 100/4.667 = 21.43 • Conclusion • We can reject H0.

  15. Some Cautions about theInterpretation of Significance Tests • Rejecting H0: b1 = 0 and concluding that the relationship between x and y is significant does not enable us to conclude that a cause-and-effect relationship is present between x and y. • Just because we are able to reject H0: b1 = 0 and demonstrate statistical significance does not enable us to conclude that there is a linear relationship between x and y.

  16. Using the Estimated Regression Equationfor Estimation and Prediction • Confidence Interval Estimate of E(yp) • Prediction Interval Estimate of yp yp+t/2 sind where the confidence coefficient is 1 -  and t/2 is based on a t distribution with n - 2 d.f.

  17. Contoh Soal: Reed Auto Sales • Point Estimation If 3 TV ads are run prior to a sale, we expect the mean number of cars sold to be: y = 10 + 5(3) = 25 cars • Confidence Interval for E(yp) 95% confidence interval estimate of the mean number of cars sold when 3 TV ads are run is: 25 + 4.61 = 20.39 to 29.61 cars • Prediction Interval for yp 95% prediction interval estimate of the number of cars sold in one particular week when 3 TV ads are run is: 25 + 8.28 = 16.72 to 33.28 cars ^

  18. ^ Residual Analysis • Residual for Observation i yi – yi • Standardized Residual for Observation i where: ^ ^ ^

  19. Contoh Soal: Reed Auto Sales • Residuals

  20. Contoh Soal: Reed Auto Sales • Residual Plot

  21. Korelasi Linear • Koefisien korelasi linear didefiisikan sebagai ukuran hubungan linear antara dua peubah X dan Y, dan dilambangkan dengan r. • Ukuran hubungan linear antara dua peubah X dan Y diduga dengan koefisien korelasi contoh r yaitu • Koefisien determinasi = r2

  22. Uji Korelasi Sederhana • Hipotesis: • Ho : r = 0 (tidak ada hubungan x dan y) • Ha : r > 0, r < 0, atau r  0 • Statistik uji:

  23. Selamat Belajar Semoga Sukses.

More Related