1 / 36

Perluasan ke n buah variabel random

Perluasan ke n buah variabel random. Definisi. Misalkan suatu percobaan random dengan ruang sampel C Misalkan X i memetakan untuk setiap c anggota C ke satu dan hanya satu X i (c)=x i : i =1,2,..,n

deliz
Download Presentation

Perluasan ke n buah variabel random

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Perluasanke n buahvariabel random

  2. Definisi • Misalkansuatupercobaan random denganruangsampelC • Misalkan Xi memetakanuntuksetiap c anggotaC kesatudanhanyasatuXi(c)=xi : i=1,2,..,n • Ruangdarivariabel-variabel random tersebutadalahA= C • Selanjutnyamisalkan A  A, maka : dimana C={c : c Cdan

  3. f memenuhipdfapabila: 1. f 2. FungsiDistribusidari n variabel random :

  4. Marginal distributions

  5. Definition Let X1, X2, …, Xq, Xq+1…, Xk denote k discrete random variables with joint probability function p(x1, x2, …, xq, xq+1 …, xk ) then the marginal joint probability function of X1, X2, …, Xq is

  6. Definition Let X1, X2, …, Xq, Xq+1…, Xk denote k continuous random variables with joint probability density function f(x1, x2, …, xq, xq+1 …, xk ) then the marginal joint probability function of X1, X2, …, Xq is

  7. Conditional distributions

  8. Definition Let X1, X2, …, Xq, Xq+1…, Xk denote k discrete random variables with joint probability function p(x1, x2, …, xq, xq+1 …, xk ) then the conditional joint probability function of X1, X2, …, Xq given Xq+1 = xq+1 , …, Xk= xkis

  9. Definition Let X1, X2, …, Xq, Xq+1…, Xk denote k continuous random variables with joint probability density function f(x1, x2, …, xq, xq+1 …, xk ) then the conditional joint probability function of X1, X2, …, Xq given Xq+1 = xq+1 , …, Xk= xkis

  10. Definition Let X1, X2, …, Xq, Xq+1…, Xk denote k continuous random variables with joint probability density function f(x1, x2, …, xq, xq+1 …, xk ) then the variables X1, X2, …, Xq are independent of Xq+1, …, Xkif A similar definition fordiscrete random variables.

  11. Definition Let X1, X2, …, Xk denote k continuous random variables with joint probability density function f(x1, x2, …, xk ) then the variables X1, X2, …, Xk are called mutuallyindependent if A similar definition fordiscrete random variables.

  12. Example Let X, Y, Z denote 3jointly distributed random variable with joint density function then Find the value of K. Determine the marginal distributions of X, Y and Z. Determine the joint marginal distributions of X, Y X, Z Y, Z

  13. Solution Determining the value of K.

  14. The marginal distribution of X.

  15. The marginal distribution of X,Y.

  16. Find the conditional distribution of: • Z given X = x, Y = y, • Y given X = x, Z = z, • X given Y = y, Z = z, • Y , Z given X = x, • X , Z given Y = y • X , Y given Z = z • Y given X = x, • X given Y = y • X given Z = z • Z given X = x, • Z given Y = y • Y given Z = z

  17. The marginal distribution of X,Y. Thus the conditional distribution of Z given X = x,Y = y is

  18. The marginal distribution of X. Thus the conditional distribution of Y , Z given X = x is

  19. Definition Let X1, X2, …, Xn denote n jointly distributed random variable with joint density function f(x1, x2, …, xn ) then

  20. Example Let X, Y, Z denote 3jointly distributed random variable with joint density function then Determine E[XYZ].

  21. Solution:

  22. Some Rules for Expectation

  23. Thus you can calculate E[Xi] either from the joint distribution of X1, … , Xn or the marginal distribution of Xi. Proof:

  24. The Linearity property Proof:

  25. (The Multiplicative property)Suppose X1, … , Xq are independent of Xq+1, … , Xk then In the simple case when k = 2 if X and Y are independent

  26. Proof:

  27. Some Rules for Variance

  28. Proof Thus

  29. Note: If X and Y are independent, then

  30. Definition Let X1, X2, … Xkbe a jointly distributed random variables (discrete or continuous), then the joint moment generating function is defined to be:

  31. Definition Let X1, X2, … Xkbe a jointly distributed random variables (discrete or continuous), then the joint moment generating function is defined to be:

More Related