1 / 5

> xyplot(cat~time|id,dd,groups=ses,lty=1:3,type="l")

> xyplot(cat~time|id,dd,groups=ses,lty=1:3,type="l") > dd<-read.csv("c:\minna\longitudinal\comp.csv") > head(dd) id ses cat pre post time 1 430 1 6 21 0 1 2 430 1 6 21 0 2 3 430 1 6 21 0 3 4 430 1 6 21 0 4 5 430 1 6 21 0 5

deliz
Download Presentation

> xyplot(cat~time|id,dd,groups=ses,lty=1:3,type="l")

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. > xyplot(cat~time|id,dd,groups=ses,lty=1:3,type="l") > dd<-read.csv("c:\\minna\\longitudinal\\comp.csv") > head(dd) id ses cat pre post time 1 430 1 6 21 0 1 2 430 1 6 21 0 2 3 430 1 6 21 0 3 4 430 1 6 21 0 4 5 430 1 6 21 0 5 6 430 1 6 21 0 6 > tail(dd) id ses cat pre post time 7368 406 3 6 34 31 117 7369 406 3 6 34 31 118 7370 406 3 6 34 31 119 7371 406 3 6 34 31 120 7372 406 3 6 34 31 121 7373 406 3 6 34 31 122 > summary(dd) id ses cat pre Min. : 3.0 Min. :1.000 Min. :2.000 Min. :15.00 1st Qu.: 78.0 1st Qu.:1.000 1st Qu.:4.000 1st Qu.:21.00 Median :406.0 Median :2.000 Median :6.000 Median :26.00 Mean :302.6 Mean :2.056 Mean :4.905 Mean :26.83 3rd Qu.:436.0 3rd Qu.:3.000 3rd Qu.:6.000 3rd Qu.:34.00 Max. :476.0 Max. :3.000 Max. :6.000 Max. :40.00 post time Min. : 0.00 Min. : 1.00 1st Qu.: 3.00 1st Qu.: 21.00 Median : 8.00 Median : 42.00 Mean : 9.88 Mean : 46.01 3rd Qu.:15.00 3rd Qu.: 66.00 Max. :31.00 Max. :161.00 > dd$catF<-factor(dd$cat,ordered=FALSE) > xyplot(catF~time|id,dd,groups=ses,lty=1:3,type="l")

  2. Problem:time | patient + sessiondiffers, how to deal with this? > mod <- lmer( catF ~ time*ses+pre+post+(time|id),dd) Error in checkSlotAssignment(object, name, value) : assignment of an object of class "factor" is not valid for slot 'y' in an object of class "lmer"; is(value, "numeric") is not TRUE > mod <- lmer( cat ~ time*ses+pre+post+(time|id),dd) > summary(mod) Linear mixed-effects model fit by REML Formula: cat ~ time * ses + pre + post + (time | id) Data: dd AIC BIC logLik MLdeviance REMLdeviance 26286 26349 -13134 26223 26268 Random effects: Groups Name Variance Std.Dev. Corr id (Intercept) 0.46120448 0.679120 time 0.00014212 0.011921 -0.692 Residual 2.00449172 1.415801 number of obs: 7373, groups: id, 30

  3. Fixed effects: Estimate Std. Error t value (Intercept) 4.7387891 0.4203240 11.274 time 0.0054949 0.0027672 1.986 ses 0.0309587 0.0379076 0.817 pre -0.0054968 0.0139072 -0.395 post 0.0140585 0.0109736 1.281 time:ses -0.0016274 0.0007328 -2.221 Correlation of Fixed Effects: (Intr) time ses pre post time -0.257 ses -0.184 0.459 pre -0.896 -0.009 0.000 post -0.316 0.006 -0.001 0.057 time:ses 0.151 -0.562 -0.835 0.009 -0.004 > anova(mod) Analysis of Variance Table Df Sum Sq Mean Sq time 1 1.4400 1.4400 ses 1 6.9715 6.9715 pre 1 0.4105 0.4105 post 1 3.2776 3.2776

  4. Questions: • Length | patient+session are different, how to deal with it? Missing data? • How to analyze the categorical response? • How to make a better plot? • Can we look at the proportion of each categories? • Can we look at the sequence of the change of the categories? – can we model this as Markov chain? • Compare each session for each patients

More Related