310 likes | 591 Views
Comparing with redshift surveys of galaxies. Redshift surveys –brief review. CFA -----2000 galaxies (1983) Las Campanas ----25000 galaxies (1996) 2dF----250,000 galaxies (2003) SDSS----900,000 galaxies (2008?). The role of different observations. Clustering and environment analysis.
E N D
Redshift surveys –brief review • CFA -----2000 galaxies (1983) • Las Campanas ----25000 galaxies (1996) • 2dF----250,000 galaxies (2003) • SDSS----900,000 galaxies (2008?)
Clustering and environment analysis • The key is to account for the incompleteness correctly • For example, two-point correlation function is measured very simply with DD(r)/RR(r)-1, where DD and RR are the number of pairs of galaxies in the observed sample and in the random sample respectively; • The key is to construct the random sample correctly
Incompleteness or selection effects • Magnitude limited sample----radial selection effect; • Limiting magnitude variation (0.1 typically) across the survey region; • Survey boundary; • Redshift measurement completeness; • Sampling rate; • Magnitude dependent redshift incompleteness • Fiber collision
Random sample • A sample of the points randomly distributed spatially but with the same observational selection effects
背 景 介 绍 统计量 • 光度函数: • 单位体积、单位光度间隔内的星系平均数目 • Schechter function: • 两点相关函数: • 与均匀随机场相比,在距离某个星系r处发现另一个星系的额外几率 • 相对速度弥散:
背 景 介 绍 测量方法 • 红移空间畸变:本征运动使星系看起来偏离膨胀背景 • 红移空间2PCF:沿视向,大尺度压扁,小尺度拉伸
背 景 介 绍 测量方法
Redshift two-point correlation functions for DR2 (Li, C. et al. astroph/0509874; 0509873; see also Zehavi et al. 2005) 红移空间的星系两点相关函数
Dependence of CF on physical properties (Li et al. 2005a,b) 星系的成团性随颜色、光谱特征(恒星形成的历史)和密集参量、恒星质量面密度(星系结构和形态)的变化
Luminosity dependence of the bias (r_p=2.7 Mpc/h; Zehavi et al. 2005) • Stellar mass dependence (Li, et al 2005a,b) • 星系成团的幅度,即偏袒因子b,随光度(上图)和恒星质量(下图)的变化。
Velocity dispersion vs. physical properties (Li, C. et al. 2005b) 星系的速度弥散随颜色、光谱特征(恒星形成的历史)和密集参量、恒星质量面密度(星系结构和形态)的变化
Velocity vs luminosity (Li, et al. 2005a,b) 星系相对运动的速度弥散随光度的变化,反映不同光度的星系的暗物质结构环境
Three ways of interpreting • Halo Occupation Distribution (HOD) model (e.g. Jing et al. 1998; Yang et al 2003) • Using galaxy formation models • Hydro/N-body simulations with star formation (physical processes; id of galaxies? e.g. V. Springel et al. 2005) • Semi-analytical models of galaxy formation + N-body simulations (e.g. Kauffmann et al. 1999)
Physical processes of galaxy formation • Formation of dark halos; gas shock heated; • Gas cooled radiatively; • Stars formed from cold gas; • Massive stars short lived; form neutron stars and supernova explosions • Explosions inject energy and metals into interstellar medium (hot+cold); heating and enrich---feedback effects • Mergers of galaxies after their host halos merge; • Black hole formation and its AGN feedback
Galaxies: red for E; blue for spirals Dark matter
理 论 比 较 构建SDSS的模拟样本 SDSS DR4 L500 L100+L300
Subhalo resolved: the bimodal color-mag distribution is much better reproduced
Summary • Main features of galaxies can be explained in current galaxy formation models; • High precision modeling for galaxy formation is still challenging, for very complicated physical process