1 / 18

Quantum enhanced metrology

Quantum enhanced metrology. R. Demkowicz-Dobrzański 1 , K. Banaszek 1 , U. Dorner 2 , I. A. Walmsley 2 , W. Wasilewski 1 , B. Smith 2 , J. Lundeen 2 , M. Kacprowicz 3 , J. Kołodyński 1 1 Faculty of Physics , Warsaw University , Poland

demont
Download Presentation

Quantum enhanced metrology

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quantum enhancedmetrology R. Demkowicz-Dobrzański1, K. Banaszek1, U. Dorner2, I. A. Walmsley2, W. Wasilewski1, B. Smith2, J. Lundeen2, M. Kacprowicz3, J. Kołodyński1 1Faculty of Physics, Warsaw University, Poland 2Clarendon Laboratory, University of Oxford, United Kingdom 3Institute of Physics, Nicolaus CopernicusUniversity, Toruń, Poland

  2. Interferometry atits (classical) limits LIGO - gravitationalwavedetector NIST - Cs fountainatomicclock Michelson interferometer Ramsey interferometry Precision limited by:

  3. Classicalphaseestimation detectingn1 and n2 + knowingtheoreticaldependence of n1, n2 on  we canestimate

  4. Classicalphaseestimation n1 and n2aresubject to shotnoise eachmeasurementyields a bit different Shotnoisescaling

  5. Quantum phaseestimation state preparation measurement estimation sensing a priori knowledge In general a veryhard problem!

  6. Global approach Localapproach no a priori knowledgeaboutthephase we want to sensesmallfluctuationsaround a knownphase Tool: Symmetryimplies a simplestructure of theoptimalmeasurement Tool: Fisher Information, Cramer-Raobound Optimal state: Theoptimal N photon state: D. W. Berry and H. M. Wiseman, Phys. Rev. Lett.85, 5098 (2000). J. J. . Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev. A 54, R4649 (1996). Heisenberg scaling

  7. In reality thereisloss…

  8. Phaseestimationinthepresence of loss state preparation measurement estimation sensing + loss

  9. Phaseestimationinthepresence of loss state preparation measurement estimation sensing + loss • no analytical solutions for the optimal states and precission • calculating Fisher information not trivial (symmetriclogarithmicderrivative) • phase sensing and loss commute (no ambiguity in ordering) • in the global approach the optimal measurements is not altered – thesolutionisobtained by solving an eigenvalue problem (fast) • effective numerical optimization procedures yielding global minima • R. Demkowicz-Dobrzanski, et al. Phys. Rev. A 80, 013825 (2009) • U. Dorner, et al.., Phys. Rev. Lett. 102, 040403 (2009)

  10. Estimationuncertaintywiththenumber of photonsused (localapproach) Whatisthescaling? Heisenberg scaling

  11. Estimationuncertaintywiththenumber of photonsused (localapproach) NOON state Whatisthescaling? Heisenberg scaling

  12. Estimationuncertaintywiththenumber of photonsused (global approach) Whatisthescaling?

  13. Do quantum statesprovidebeterscalingexponentinthepresence of loss?

  14. Fundamentalbound on uncertaintyinthepresence of loss (global approach) state preparation measurement estimation sensing + loss J. Kolodynski and R.Demkowicz-Dobrzanski, Phys. Rev. A 82, 053804 (2010) the same boundcan be derivedinthelocalapproach: S. Knysh, V. N. Smelyanskiy, and G. A. Durkin,Phys. Rev. A, 83, 021804 (2011) B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nature Physics, 7, 406 (2011).

  15. Fundamentalbound on uncertaintyinthepresence of loss (global approach) localapproach: global approach:

  16. Fundamentalbound on uncertaintyinthepresence of loss (global approach) localapproach: global approach: analyticalbound for J. Kolodynski and R.Demkowicz-Dobrzanski, Phys. Rev. A 82, 053804 (2010)

  17. Fundamentalbound on asymptotic quantum gaininphaseestimation Example: even for moderatelossquantum gaindegradesquickly

  18. Summary • Asymptotically, lossrenders quantum phaseestimationuncertaintyscalingclassical and destroysthe Heisenberg scaling. • Quantum statescan be practicallyusefulonly for verysmalldegree of loss (loss <1% impliesgain> 10) orsmallnumber of probes • Neitheradaptivemeasurements, nor photondistinguishabilitycan help K. Banaszek, R. Demkowicz-Dobrzanski, and I. Walmsley, Nature Photonics 3, 673 (2009) V. Giovannetti, S. Lloyd, and L. Maccone, NaturePhotonics, 5, 222 (2011). U. Dorner, et al. Phys. Rev. Lett. 102, 040403 (2009) R. Demkowicz-Dobrzanski et alPhys. Rev. A 80, 013825 (2009) M. Kacprowicz, R. Demkowicz-Dobrzanski, W. Wasilewski, and K. Banaszek, NaturePhotonics 4, 357(2010) J. Kolodynski and R.Demkowicz-Dobrzanski,Phys. Rev. A 82, 053804 (2010) S. Knysh, V. N. Smelyanskiy, and G. A. Durkin,Phys. Rev. A, 83, 021804 (2011) B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nature Physics, 7, 406 (2011).

More Related