1 / 36

Simulering av granulära material GRAM – Gruvprogram inom ProcessIT

Simulering av granulära material GRAM – Gruvprogram inom ProcessIT. Dr Martin Servin UMIT Research Lab / Department of Physics 2010-06-03. The challenge. simulation tool for understanding optimization re-design requires fast large-scale simulations suitable models

demont
Download Presentation

Simulering av granulära material GRAM – Gruvprogram inom ProcessIT

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Simuleringavgranuläramaterial GRAM – GruvprograminomProcessIT Dr Martin Servin UMIT Research Lab / Department of Physics 2010-06-03

  2. The challenge simulation tool for • understanding • optimization • re-design requires • fast large-scale simulations • suitable models • analysis of large data sets

  3. The challenge

  4. The challenge

  5. The challenge

  6. Teaser

  7. 900.000 particles, water, ~3m, 10/1 sim ratio

  8. Teaser

  9. Teaser

  10. Overview • Background • The processes • Project status – results • Outlook • People

  11. Background • UmU: research on high-performancephysicsbasedvisualsimulation • Oryx Simulations: making heavy machinerytrainingsimulators (1998) • Algoryx Simulations: spin-off company -> AgXMultiphysicsToolkit (2006) • Volvo CE: optimization/re-design of loading / digging • LKAB: optimization/re-design of balling plant • ProcessITpre-study (PellIT - 2009) • Research projects: Algoryx, Fraunhofer, UnivKaiserslauten, LKAB, Oryx, ProcessIT, UmU, Volvo CE (2010 - 2013)

  12. The processes • Balling plant (LKAB) • Wheel loader (Volvo CE / Oryx)

  13. Balling plant In: - fines (ore + binding) - undersized pellets 100 ton/h • Mono-sizedspherical pellets • Understand flow patterns and forces • Outlet design • Control variables • Agglomeration process • 100K – 100M particles • Time scales 1ms – 5min Out: - green pellets Return: - undersized pellets - oversized pellets (crush)

  14. Wheel loading • Optimal loading, digging, tillage • Minimize time, fuel, wear on tool and wheels • Maximize operator comfort and support • Re-design of load bucket and motion control • Coupling AgX simulations, operator VE with Volvo CEs Simulink drive train models Shmulevich et al, Terramechanics (2007)

  15. Project status – pellet part • Fast large-scale simulations • stable DAE integrator at large timestep (100%) • parallel solver for large sparse MLCPs (25%) • merge/split acceleration (50%) • adaptive resolution (10%) • contact reduction (25%) • Suitable models • Analysis Optimization

  16. Project status – pellet part • Fast large-scale simulations • stable DAE integrator at largetimestep(100%) • parallelsolverfor largesparseMLCPs (25%) • merge/split acceleration (50%) • adaptive resolution (10%) • contactreduction(25%) • Suitablemodels • rigid bodydiscrete elements (75%) • particlefluid / SPH (25%) • hybrid (5%) • simplifieddryfrictionmodel (10%) • Analysis Optimization

  17. Project status – pellet part • Fast large-scale simulations • stable DAE integrator at largetimestep(100%) • parallelsolverfor largesparseMLCPs (25%) • merge/split acceleration (50%) • adaptive resolution (10%) • contactreduction(25%) • Suitablemodels • rigid bodydiscrete elements (75%) • particlefluid / SPH (25%) • hybrid (5%) • simplifieddryfrictionmodel (10%) • Analysis • Modelidentification (25%) • Simulation validation (5%) • Flow patterns and forces (5%) Optimization

  18. Project status – pellet part • Fast large-scale simulations • stable DAE integrator at largetimestep(100%) • parallelsolverfor largesparseMLCPs (25%) • merge/split acceleration (50%) • adaptive resolution (10%) • contactreduction(25%) • Suitablemodels • rigid bodydiscrete elements (75%) • particle fluid / SPH (25%) • hybrid (5%) • simplifieddryfrictionmodel (10%) • Analysis • Modelidentification (25%) • Simulation validation (5%) • Flow patterns and forces (5%) • Optimization • Outlet design (0%) • Control variables (0%)

  19. Project status – pellet part

  20. Project status – pellet part

  21. Project status – pellet part

  22. Project status – pellet part

  23. Project status – pellet part

  24. Project status – pellet part

  25. Project status – pellet part

  26. Project status – pellet part

  27. Project status – pellet part

  28. Outlook • Market for dynamical simulation tools for granular matter and machines? • New projects? • optimal design of off-road vehicle boggies and tracks - SLU • dynamic load forces and mechanical wear on tools for excavation, mining, forestry – LTU

  29. Staff • Researchers • Dr Martin Servin, UMIT / Department of Physics • Dr Claude Lacoursière, UMIT / HPC2N • PhLic Kenneth Bodin, UMIT / HPC2N • Prof Mats G Larson, UMIT / Department of Mathematics • Prof Bo Kågström, UMIT / Department of Computing Science / HPC2N • PhD, project assistants and master thesis • PengfeiTian, Mona Forsman, Stefan Hedman, OlofSabelström, Adam Sernheim, John Nordberg • Algoryx, Oryx, Volvo CE • LKAB: Kent Tano, Kjell-OveMichelsson

  30. Thank you!

  31. UMIT Research Lab En strategisk satsning inom beräkningsteknik, visuell simulering och optimering • bas i framstående grundforskning • teknikvetenskaplig forskning • tvärdisciplinära frågeställningar • industriella tillämpningar och innovationer 40 MSEK på 5 år Umeå universitet, Balticgruppen, Umeå kommun, EU Mål-2 och samarbete med ProcessIT Innovations,

  32. Simulation Results Model Optimization Problem UMIT Research Lab- Relevans och aktualitet • Konvergens i metoder och verktyg • Parallella revolutionen • Dynamiskt skalbar IT-infrastruktur Beräkning IT-Infrastruktur Visualisering & interaktion Programvara & hårdvara

  33. UMIT Research Lab- Satsningens komponenter • Fysisk och organisatorisk etablering • Rekrytering – 2 tenure track Ass. Prof. • 6-10 postdoc/doktorandpaket • Projektmedel & utrustning Samtidigt rekrytering av forskningsledare inom datorgrafik och visualisering Utrustning: display,  interaktion,   simulatorer,  programvaror,  datorer,   3d-skrivare,  3d-scanners mm

  34. UMIT Research Lab- delområden idag • Computational design optimization – M Berggren • Computational mathematics – M Larson • Control system – A Shiriaev/L Freidovich • Flexible and scalable IT infrastructures (Grids & clouds) – E Elmroth • Interactive multiphysics and complex mechanical systems – M Servin/C Lacoursière • IT management – J Holmström • Parallel and scientific computing – B Kågström

  35. UMIT Research Lab- Tillämpningsprojekt - ett urval Modeling and simulation of granular matter and machines Volvo CE, LKAB, Algoryx, Oryx Inverse Problems for Electromagnetics Valutec AB, SP Trätek Optimal Control and Design DAS Audio SA Numerical Algorithms for Stabilization of Linear Systems with Periodic Coefficients - German Aerospace Center (DLR) Simulator Based Design Komatsu Forest Effektivtnyttjandeavmuticoreochparallellism IBM, Intel, Microsoft, Nvidia, Sony Ericson Migration of large-scale virtual machines SAP Research Simulation of fluids in bearings SKF

  36. Recruitments – 10 Associate professor with tenure track • Industrial and applied mathematics • Parallel and multicore computing • Industriellekonomi – logistik, kombinatoriskoptimering, riskanalys. • Energiteknik – energieffektivisering, drivmedel. • Tekniskfysik - tillämpadspektroskopiochdetektion. • Interaktionoch design • Tekniskdatavetenskap -industriellprogramvaruteknik, flexibelochskalbar IT-infrastruktur • Bioteknik • Miljösystemteknik – miljökemi/systembiologi, livscykelanalys • Automation/Reglerteknik

More Related