1 / 60

and the Spin of the Nucleon Selected Highlights

and the Spin of the Nucleon Selected Highlights . K. Rith. FAU Erlangen-Nürnberg. Frascati, 29.05.2007. s z = ½ = J q + J g = ½  + L q + ( G + L g ). Overview. Introduction. HERMES. Determination of . The quark helicity distributions q(x).

denna
Download Presentation

and the Spin of the Nucleon Selected Highlights

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. and the Spin of the Nucleon Selected Highlights K. Rith FAU Erlangen-Nürnberg Frascati, 29.05.2007 sz=½= Jq + Jg = ½ + Lq + (G + Lg)

  2. Overview Introduction HERMES Determination of  The quark helicity distributions q(x) The gluon helicity distribution g(x) Transverse spin physics: transversity q(x), Collins FF, Sivers DF Quark orbital angular momenta Lq Summary and outlook

  3. Introduction and Motivation

  4. Spin-dependent DIS =E - E‘ Q2 = -q2 x=Q2/(2M) = fraction ofnucleon‘s momentum carried by struck quark ucleon Nucleon Nucleon     Quarks Quarks 1/2~q+(x)  3/2~q-(x)  Helicity DF: q(x):=q+(x)-q-(x) g1(x) := ½ q zq2q(x) 1/2- 3/2g1 Asymmetry: A1=  F1(x) := 1/2+ 3/2F1 ½ q zq2q(x)

  5. Integrals and sum rules 1 := g1(x)dx;  9 1p,(n)= 4(1)u +1(4)d +s SU(3): 2 relations a3= u -d=gA/gV=1,269Neutron decay a8= u +d-2s = 0,586 , decay a0== u +d+s = ? QCD MS scheme: =0 + 36 1p,(n)(Q2)= [ 3a3+a8] CNS(Q2) + 4CS(Q2) + 8nfGCG(Q2) - Bjorken sum rule: 6(1p -1n)  a3=gA/gV Ellis-Jaffe S.R.: s = 0  a8 = 1p =(1/12)[a3+ (5/3)a8]C(Q2) 0,175 (for Q2 10 GeV2)

  6. The EMC result for g1p(x) QPM: 4/3 -1/3 0 Consequence (1987): u 0,78 d  -0,47 s  -0,19 1) Quark-‘Sea‘ is negatively polarised 2)=u+d+s = 0,12 0,090,14 1 1p =0,126  0,010  0,015 Contribution of Quark Spins to Nucleon-Spin very small J. Ashman et al., PL B 206 (1988) 364 (1337 Cit.) J. Ashman et al. Nucl. Phys. B 328 (1989) 1 (1160 Cit.) Spin-‘crises‘

  7. HERMES

  8. HERMES history - I Idea: longitudinally polarisede- beam of HERA + internal polarised storage cell atomic gas target 12/87, 1/88: 2 Letters of intent 12/88: Formation of HERMES 1/90: HERMES proposal (11/91), 5/92: Experimental demonstration of e polarisation 6/92: LNF joins HERMES 10/92: Approval (subject to funding) 7/93: Final Approval - Technical Design Report 8/93 – 2/95: Detector construction and installation 10/5/95: Start data taking (3:40 hrs)

  9. HERMES history - II 1995-2000: Longitudinal target polarisation (1995: 3He, 1996-97 H, 1998-2000 D) + unpolarised targets (H2, D2, 4He, N2, Kr, Xe) 2002-2005: Transverse target polarisation (H ) + unpolarised targets 2006-2007: Recoil detector (H2, D2)– exclusive reactions 2/7/2007: End of HERA

  10. HERMES @ HERA Electron beam: E = 27,5 GeV, Ie < 50 mA

  11. hadron separation Aerogel n=1.03 C4F10 n=1.0014 RICH: Hadron:  ~ 98%, K ~ 88% , P ~ 85% HERMES spectrometer HERAe+/e- beam of 27.6 GeV Polarized internal gas target kinematics: 0.02<x<0.6, 1.0<Q2<15 GeV2 tracking: p/p~2%, <0.6 mrad, 40-220 mrad PID: Calorimeter, Preshower, TRD, RICH

  12. The polarised atomic gas target

  13. Data taking with polarised targets Longitudinal target polarisation (1995-2000) Transverse target polarisation (2002-2005) x106 Number of DIS events

  14. Determination of 

  15. The Asymmetry A1 g1/F1 P. R. D 75 (2007) 012007

  16. A1 g1/F1 P. R. D 75 (2007) 012007 A1 well known for x 10-3 Excellent agreement between all experiments A1 depends only weakly on Q2 <Q2> = f(x) Knowledge of A1d substantially improved by HERMES and COMPASS data ? A1p(x=1)  1 A1d(x=1) = ?

  17. g1 P. R. D 75 (2007) 012007

  18. [Q2>1 GeV2 data only] x MS a0= DS (exp) (theory) (evol) = 0,330 ± 0,025 ± 0,011 ± 0,028 Integrals,  measured a8=0,586 QCD QCD ωD=0,05±0.05 Assumption:1dsaturates forx<0.05 1d= 0,042  0,001(stat)  0,003(sys) SMC:  = 0,12 0,090,14

  19. Quark helicity distributions q(x)

  20. q(x) from SIDIS Leading hadron originates with large probability from struck quark Dqh(z):= Fragmentation function (FF) z = Eh/ zq2q(x)Dqh(z) A1h(x,z) = zq2 q(x)Dqh(z) Measurehadronasymmetries Measure hadron asymmetries Targets: H, D ; h=±, K±, p(identified with RICH)

  21. Quark helicity distributions PRL 92 (2004) 012005, PRD 71 (2005) 012003 u quarks: large positive polarisation d quarks: negative polarisation d(x) -0.4u(x)(!?) Sea quarks (u, d, s): polarisation compatible with 0. u > d ? In measured range (0,023 – 0.6): • u(x) dx = +0.601  0.063 • d(x) dx = -0.226  0.063 • u(x) dx = -0.002  0.043 • d(x) dx = -0.054  0.035 • s(x) dx = +0.028  0.034 s < 0 ? x

  22. Gluon helicity distribution g(x)

  23. uvanddv(rather)well determined q and g from (N)NLO-QCD Fits gandqvery badly determinedg  0,5  1,1 Note: From g1d (0,01<x<1)exp  0,330,03 From NLO fits (0<x<0.01)fit  -0,13 0,11

  24. Direct determination of g/g Method: Photon-Gluon-Fusion q q t  h/2mq  Charm-production (Hard scale: mass of c-Quarks) e+, + e-, - D J/ * * c pt c c c g c g c D  (Pairs) of hadrons with high transverse momenta (Hard scale: pt ) h2 * g () h1

  25. Direct determination of g/g Data: Deuteron target Singlehadron with high transverse momentum No scattered electron in acceptance MC: PYTHIA 6.2 Simulation of total ep cross section Determination of relative contributions R of sub-processes - Vector mesons - anomalous (*  qq ) processes - direct photon processes (PGF, QCDC) - LO DIS (* q q ) and their asymmetries

  26. Measured asymmetries Comparison of measured asymmetries with those from MC for: g/g = 0 (middle curve) (contribution of quarks) g/g = -1 (upper curve) g/g = +1 (lower curve) Determination of g/g:

  27. g/g x Direct determination of g/g HERMES, PRL 84 (2000) 2584 <m2>=1.35 GeV2 +0.127 g/g(x,2) = 0.071 ± 0.034(stat) ± 0.010 (sys-exp)(sys-model) -0.105

  28. Transverse spin physics

  29. The 3 leading twist distribution functions All equally important for a complete description of momentum and spin distribution of the nucleon at leading-twist. Transversity DF Unpolarised DF Helicity DF q(x), f1q(x) q(x), g1q (x) q(x), h1q (x) ‚unknown‘ well known known HERMES 1995-2000 HERMES 2002-2005

  30. The transversity distribution q(x,Q2) Helicity basis: |+, |- q(x,Q2) Transverse Spin basis: | , |  q is chiral-odd associated with helicity flip of struck quark q in helicity basis: | ,  Hard EM and strong interactions cannot flip the chirality of the probed quark qis not accessible in inclusive DIS

  31. How can one measure transversity? Need another chiral-odd object!  Semi-Inclusive DIS one hadron in the initial state and at least one in the final state (semi-inclusive leptoproduction) chiral – odd DF chiral – odd FF How to measure transversity q FF q h FF chiral-odd FF chiral-odd DF

  32. h q q h The Collins fragmentation function Collins FF H1(z,kT2) correlates transverse spin of fragmenting quark and transverse momentum Ph of produced hadronh Chiral – odd & naïve T – odd produces left-right asymmetry in the direction of the outgoing hadron

  33. requires a quark rescattering via soft gluon exchange (gauge link) (Brodsky, Hwang, Schmidt) The Sivers distribution function f1T Describes correlation between intrinsic quark pT and transverse nucleon spin f1Tq(pT2) describes probability to find an unpolarised quark with transverse momentum in a transversely polarised nucleon Chiral – even & naïve T – odd Non-zero Sivers DF requires non-vanishing orbital angular momentum in the nucleon wave function

  34. The Sivers effect Attractive FSI deflects quark inwards Left-right distribution asymmetry is converted into right-left momentum asymmetry Impact parameter formalism (M. Burkardt hep-ph/030926) Orbital angular momentum of quarks Virtual photon sees different x for different b Quark distributions depend on b green quark anti-green remnant

  35. Angular distributions in SIDIS : angle between lepton scattering plane and hadron production plane S: angle between lepton scattering plane and transverse spin component S of target nucleon

  36. Azimuthal angular asymmetries in SIDIS U: unpol. e-beam T: transv. pol. Target Collins Sivers

  37. Extraction of SSA amplitudes Maximum likelihood fits of SSA amplitudes for pions and charged kaons: F( 2sin( + S)hUT, 2sin( - S)hUT, 2sin(2 - S)hUT, 2sin(3 - S)hUT, 2sin(S)hUT)

  38. Collins amplitudes for +/- (2002-05) 2sin( + S)hUT ~q(x)H1q(z) also: A. Airapetian et al, P. R. L. 94 (2005) 012002 Non-zero Collins effect Both Collins FF and transversity DF sizeable Surprisingly large - asymmetry Possible source: large contribution (with opposite sign) from unfavored fragmentation, i.e. u - H1,disf - H1,fav

  39. Collins amplitudes for +/-und K+/- 2sin( + S)hUT ~q(x)H1q(z) also: A. Airapetian et al, P. R. L. 94 (2005) 012002

  40. Collins amplitudes for +/-und K+/-

  41. Sivers amplitudes for +/- (2002-05) 2sin(-S)hUT~f1Tq(x)D1q(z) +asymmetry significantly different from zero and positive First hint of naive T-odd DF from DIS also: A. Airapetian et al, P. R. L. 94 (2005) 012002 orbital angular momentum Lzq But: Contributionof Lzqto nucleon spin unclear -asymmetryconsistent with zero FF D1known  Sivers DF can be extracted from HERMES data

  42. Sivers amplitudes for +/- and K+/- large! 2sin(-S)hUT~f1Tq(x)D1q(z) also: A. Airapetian et al, P. R. L. 94 (2005) 012002 K+ amplitudes larger than + amplitudes Possibly substantial contribution of sea quarks to Sivers DF

  43. SSA amplitudes for neutral pions Isospin symmetry of -mesons is fullfilled within the statistical uncertainties

  44. Quark orbital angular momentum Lq

  45. Q2 t Determination of Lq Ji sum rule: Jq=1/2 + Lq= lim dx x [H(x,,t) + E(x,,t)] H(x,,t), E(x,,t): Generalised Parton Distributions (GPDs) t  0 Access: exclusive processes Final state sensitive to different GPDs Vector mesons (, , ) H, E Pseudoscalar mesons(,) H, E DVCS () H, E, H, E    

  46. e+/- p→ e+/- p g (MX<1.7 GeV) (in HERMES acceptance) Regge, D-term Regge, no D-term fac., D-term fac., no D-term Determination of Lq DVCS: Beam charge asymmetry DVCS: Transv. target spin asymmetry (SA) DVCS: Long. target SA 0: Transv. target SA

  47. Q2 t Determination of Lq Program until July 3rd 2007: Detailed study of exclusive processes with Recoil-Detector:

  48. Nucleon Spin Structure & HERMES Unpolarised DIS SLAC, BCDMS, NMC, HERA… g/g = 0.071 ±0.035(exp) a0 =0.330±0.025(exp)  Signals for GPDs  Ju+Jd Lq 0 individual quark helicity distributions q(x)  0 After Delia Hasch, Spin06, Kyoto

  49. Further results - Outlook Many more results on various subjects: at present 40 publications with in average 62 citations each hadronisation in nuclei  quark hadron duality in A1p  Q2 dependence of GDH-integral SSAfor inclusiveand exclusive production DIS on nuclear targets DSAfor exclusive VM production Nuclear attenuation of coherent and incoherent ‘s (coherence length, colour transparency) pion multiplicities and fragmentation functions longitudinal and transverse  polarisation vector meson production   LNF HERMES is a big success !!

More Related