1 / 59

Photonic crystals and related nanostructures for solar light management

Photonic crystals and related nanostructures for solar light management. Christian Seassal , Loïc Lalouat, He Ding, Romain Champory, Ngoc Vu Hoang, Abdelmounaim Harouri, Hai-Son Nguyen, Régis Orobtchouk, Alain Fave, Fabien Mandorlo, Emmanuel Drouard

Download Presentation

Photonic crystals and related nanostructures for solar light management

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Photonic crystals and related nanostructures for solar light management Christian Seassal, Loïc Lalouat, He Ding, Romain Champory, Ngoc Vu Hoang, Abdelmounaim Harouri, Hai-Son Nguyen, Régis Orobtchouk, Alain Fave, Fabien Mandorlo, Emmanuel Drouard INL, Institut des Nanotechnologies de Lyon, UMR 5270 CNRS-Université de Lyon, Ecole Centrale de Lyon, INSA-Lyon, France In collaboration with: Imec (V. Depauw et al), LPICM (P. Roca i Cabarrocas et al), Obducat (K. Lee et al), LPN (S. Collin et al), ILM (A. Pereira et al), U.Namur (O. Deparis et al)

  2. Context: Bulk solar cells, thin film solar cells L’optique pour le photovoltaïque • Efficiency limitations • Si solarcell • Thin film solarcell • Which limitations? • In-couplinglosses R0? AR layer

  3. Context: Bulk solar cells, thin film solar cells Rough surface L’optique pour le photovoltaïque • Efficiency limitations • Si solarcell • Thin film solarcell • Which limitations? • In-couplinglosses • EQE/absorption limited in red/IR A100%?

  4. Context: Bulk solar cells, thin film solar cells L’optique pour le photovoltaïque • Efficiency limitations • Si solarcell • Thin film solarcell • Which limitations? • In-couplinglosses • EQE/absorption limited in red/IR • Thermalization in the UV/blue • No absorption belowEg Third Generation Photovoltaics, Vasilis Fthenakis Ed.

  5. Efficiency enhancement in PV devices L’optique pour le photovoltaïque • In-coupling and absorption control • Using the photonictoolbox: Samuelson U. Lund, 2015 wires/holes/ cones/pyramids Bermel MIT, 2007 Metal/dielectric F. J. Haug EPFL, JPV 2015 guided modes / localized modes Boriskina MIT, 2015

  6. Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque • High index contrast periodic structures: • a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Absorber (Si in this talk) Solar cells Back electrode/reflector

  7. Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque • High index contrast periodic structures: • a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Absorber (Si in this talk) Solar cells Back electrode/reflector

  8. Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque • High index contrast periodic structures: • a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure RE-doped “layer” (AR+converter) Absorber (Si in this talk) Solar cells Back electrode/reflector

  9. Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque • High index contrast periodic structures: • a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Absorber (Si in this talk) Solar cells Back electrode/reflector

  10. Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque • High index contrast periodic structures: • a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Top junction Indermediate reflector Solar cells Bottom junction Back electrode/reflector

  11. How can nanophotonics outperform solar cells? L’optique pour le photovoltaïque Light traping into resonant modes Increased absorption Light localisation Higher absorption, lower pin thickness Radiative losses trapping (direct bandgap cells) • Increased Voc Control of absorption/emission of light, wavelength conversion • Solar cells using UV, IR photons • Increased Jsc • Increased angular acceptance

  12. Efficiency enhancement in PV devices L’optique pour le photovoltaïque • In-coupling and absorption control • Up to whichlimit? « Yablonovitch » limit, 4n² IEEE Trans. Electron. Dev. 1984 weaklyabsorbing medium Lambertianlimit, below 4n² M.A. Green weakly and stronglyabsorbing media

  13. Efficiency enhancement in PV devices L’optique pour le photovoltaïque • In-coupling and absorption control • Up to whichlimit? • Usingthe photonictoolbox

  14. Efficiency enhancement in PV devices L’optique pour le photovoltaïque • Key questions: Which are the best (nano)structures for PV? Optical, electricalproperties How to realizethese at lowcost? Whatis the mostappropriate absorber thickness Real performances of photonizedsolarcells

  15. Outline L’optique pour le photovoltaïque • Introduction: nanophotonics and solarenergy conversion • Photoniccrystals and solarcells • Physics and modal engineering, case of a-Si:H • Thin c-Si solarcellsassisted by PhCs • Multi-periodic/complexabsorbers • Absorption enhancementwith pseudo-disorderednanopatterns • Design rules for solarcellsincludingcomplex patterns • PhCs for wavelength conversion • Rare earthdopedphotonicmetastructures for down shifting • Conclusion and outlook

  16. Outline L’optique pour le photovoltaïque • Introduction: nanophotonics and solarenergy conversion • Photoniccrystals and solarcells • Physics and modal engineering, case of a-Si:H • Thin c-Si solarcellsassisted by PhCs • Multi-periodic/complexabsorbers • Absorption enhancementwith pseudo-disorderednanopatterns • Design rules for solarcellsincludingcomplex patterns • PhCs for wavelength conversion • Rare earthdopedphotonicmetastructures for down shifting • Conclusion and outlook

  17. 2-Photonic crystal absorbers • Case of an ultra-thin a-Si:H layer, 100nm • RCWA simulation: absorption spectrum PhC -a=380nm -D/a=0.62 Flat reference Y. Park, Opt. Express 17, 14321 (2009) G. Gomard et al., J. Appl. Phys. 108, 123102 (2010)

  18. 2-Photonic crystal absorbers • Case of an ultra-thin a-Si:H layer, 100nm • which mechanisms control the absorption? • For>550nm >80% PhC Flat reference PBG PBG R. Peretti et al., J. Appl. Phys. 111, 123114 (2012)

  19. 2-Photonic crystal absorbers • Case of an ultra-thin a-Si:H layer, 100nm • which mechanisms control the absorption? • For>550nm SNOM SEM (weakly) self-localized slow light mode

  20. 2-Photonic crystal absorbers • Case of an ultra-thin a-Si:H layer, 100nm • which mechanisms control the absorption? The absorbing medium Abs. coef.= The resonance = mediator Q0=wt0 • For>550nm • Absorption peaks due to Bloch mode resonances • Critical coupling of a single mode: 50% absorption • Additional absorption peaks = Multimode structure •  Abs. up to 100% Critical coupling conditions or For a-Si:H : a=1000cm-1 Q0=10-100 Y. Park, Opt. Express 17, 14321 (2009) R. Peretti et al., J. Appl. Phys. 111, 123114 (2012)

  21. 2-Photonic crystal absorbers • Case of a 100nm thick a-Si:H layer • which mechanisms control the absorption? • For 450nm • No absorption peak • but... strong absorption increase PhC Flat reference

  22. 2-Photonic crystal absorbers • Investigating the physics of absorbing PCs in the blue l-range SNOM experiments Back-side illumination Front-side collection using a SNOM tip FDTD simulations Incident light coupled to vertically guided “channeling modes” Ack.: R. Artinyan, S. Callard G. Gomard et al., APL 104, 051119 (2014)

  23. 2-Photonic crystal absorbers • Investigating the physics of absorbing PCs in the blue l-range FDTD simulations 70-85% of incident light coupled “channeling modes”, and absorbed in a-Si:H, but… etched sidewalls G. Gomard et al., APL 104, 051119 (2014)

  24. 2-Photonic crystals and solar cells • Case of a 1µm thick c-Si solar cell stack With periodic nano-pyramids Ful parameters scan: (os) 1. Period (Λ) 2. ff=a / Λ (Λ) 3. Thickness of optical spacer (os)

  25. 2-Photonic crystals and solar cells • Case of a 1µm thick c-Si solar cell stack Period (Λ): 800 nm, ff: 0.85 Optical spacer (os): 110nm Anti-Reflection Effect More modes: e.g. SBM 23.59 mA/cm² 11.52 mA/cm² • 105% increase

  26. 2-Photonic crystals and solar cells • Nanopattern shape optimization: optical assessment Collab.: imec, U. Namur, LPICM, Obducat

  27. 2-Photonic crystals and solar cells • Optimized nanopattern: optical assessment, experiments 1µm thick c-Si “Epifree silicon” • Over the Lambertian limit for l>500nm • Over the 4n² limit for specific resonances Collab.: imec, U. Namur, LPICM, Obducat

  28. 2-Photonic crystals and solar cells Nanopattern shape optimization: electrical properties • 280-µm-thick FZ p-type wafers, patterned by Nanoimprint, passivated with a-Si:H • Carrier lifetime assessment by Quasi Steady-State PhotoConductance Flat wafer RIE shallow RIE deep ICP TMAH 780 µs 170 µs 44 µs 2200 µs 930 µs • Lifetimes affected by: • The etching process: wet better than dry • Surface area enhancement + conformalityof passivating layer Collab.: imec, U. Namur, LPICM, Obducat

  29. 2-Photonic crystals and solar cells Solar cells, 1µm thick c-Si with periodic nanopatterns 4.5% Collab.: imec, U. Namur, LPICM, Obducat

  30. 2-Photonic crystals and solar cells Solar cells, 1µm thick c-Si with periodic nanopatterns 6.5% efficiency, 18mA/cm² 4.5% • Strong Jsc increase due to photonic crystals • Still room for improvement to reach simulated Jsc : parasitic absorption

  31. 2-Photonic crystals and solar cells Using c-Si prepared by PECVD (LPICM) low cost low T° scalable Collab.: LPICM, LPN, Total • Nanopatterning of PECVD c-Si is feasible Nano Lett 2016, to appear

  32. 2-Photonic crystals and solar cells Using c-Si prepared by PECVD (LPICM) low cost low T° scalable Collab.: LPICM, LPN, Total • Still limited efficiency due to absorption in front and back contacts, and limited absorption in IR Nano Lett 2016, to appear

  33. 2-Photonic crystals and solar cells How to further increase the efficiency/get closer to the limits? K.X. Wang Stanford, Nano Lett. 2012 X.Q. Meng U. Lyon, Opt. Express 2012 U.W. Paetzold, Jülich, APL 2014 S. Noda U. Kyoto, ACS Phot 2014 • Dual gratings • Periodic  controlled disorder  disorder

  34. Outline L’optique pour le photovoltaïque • Introduction: nanophotonics and solarenergy conversion • Photoniccrystals and solarcells • Physics and modal engineering, case of a-Si:H • Thin c-Si solarcellsassisted by PhCs • Multi-periodic/complexabsorbers • Absorption enhancementwith pseudo-disorderednanopatterns • Design rules for solarcellsincludingcomplex patterns • PhCs for wavelength conversion • Rare earthdopedphotonicmetastructures for down shifting • Conclusion and outlook

  35. 3-Multi-periodic/complex absorbers • What can we expect from disorder? SNOM SEM (weakly) self-localized slow light mode Strongly localized light High confinement in real space. Impact in a solar cell?

  36. 3-Multi-periodic/complex absorbers • Increasing the absorption bandwidth in the low absorption domain Pseudo-disordered pattern = supercell of randomly located holes, periodically repeated in a square lattice. L. Lalouat et al., SOLMAT (2016) H. Ding et al., Opt. Express 24, A650 (2016)

  37. 3-Multi-periodic/complex absorbers • Increasing the absorption bandwidth in the low absorption domain Supercell lattice: 3x3 Depth (h) cSi Metal Shift Pseudo-disordered pattern = supercell of randomly located holes, periodically repeated in a square lattice.

  38. 3-Multi-periodic/complex PhC absorbers • Increasing the absorption bandwidth in the low absorption domain • Experiments: 3x3 supercell pseudo-disordered structure (EBL+RIE) Smaller amplitude peaks Broaden peaks New peaks

  39. 3-Multi-periodic/complex PhC absorbers • Increasing the absorption bandwidth in the low absorption domain Square lattice Pseudo-disorder Relative increase Experimental 2.1% 2.7% Theoretical Shift !! Metrics !!  over 2% relative increase, in the best cases

  40. 3-Multi-periodic/complex PhC absorbers • Design rules: realspaceanalysis2µm thick c-Si H. Ding et al. Opt. Express 2016 2 x 2 3 x 3 4 x 4 holes are evenly distributed high !! Metrics !! Jsc (mA/cm²) low Clusters of holes appeared

  41. 3-Multi-periodic/complex PhC absorbers • Design rules: realspaceanalysis2µm thick c-Si H. Ding et al. Opt. Express 2016 2 x 2 3 x 3 4 x 4 • Efficient design of optimized light-trapping structures !! Metrics !!

  42. Outline L’optique pour le photovoltaïque • Introduction: nanophotonics and solarenergy conversion • Photoniccrystals and solarcells • Physics and modal engineering, case of a-Si:H • Thin c-Si solarcellsassisted by PhCs • Multi-periodic/complexabsorbers • Absorption enhancementwith pseudo-disorderednanopatterns • Design rules for solarcellsincludingcomplex patterns • PhCs for wavelength conversion • Rare earthdopedphotonicmetastructures for down shifting • Conclusion and outlook

  43. Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque • High index contrast periodic structures: • a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Absorber (Si in this talk) Solar cells Back electrode/reflector

  44. Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque • High index contrast periodic structures: • a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure RE-doped “layer” (AR+converter) Absorber (Si in this talk) Solar cells Back electrode/reflector

  45. 4-PhC for wavelength conversion • Rare-earthdopedphotonicmeta-structure Rare earth doped layer e.g. Eu-doped Y2O3 SiNx Photonic crystal LDS Layer Visible photons (611 nm) UV photons (~ 400nm) Collab.: B. Moine, A. Pillonnet, A. Pereira

  46. 4-PhC for wavelength conversion • Rare-earthdopedphotonicmeta-structure, luminescence measurements with an integrating sphere L=250nm and r=80nm Collab.: N.-V. Hoang, B. Moine, A. Pillonnet, A. Pereira Strong Enhancement in Eu3+ emission → Expected improvement of down shifting efficiency N.-V. Hoang et al. (in preparation)

  47. 4-PhC for wavelength conversion • Photonic resonances at absorption wavelengths: Measured Transmittance RCWA Simulation Histogram from SEM images (1mm2) Bloch modes resonances • Clear evidence of the resonant modes • Transmittance remains high at longer wavelength N.-V. Hoang et al. (in preparation)

  48. 4-PhC for wavelength conversion • Photonic modes at emission wavelengths: Excitation (394 nm) q Emission (611 nm) • Clear evidence of the resonant modes • Oblique emission 611 nm N.-V. Hoang et al. (in preparation)

  49. 5-Conclusions, outlook In-plane Bloch modes and vertical “channeling” modes PhC absorbers Mediators to control incident light capture and absorption  Enables to increase Abs/JSC by 100% Photonic crystal solar cells  Dedicated processes developped: nanopatterning, passivation Positive impact of controlled perturbations  Experimental assessment of the integrated absorption increase in a- Si:H and c-Si based stacks. Strong enhancement of down shifting thanks to PhCs  x50, expected PV conversion efficiency Still many work to do in photonics:  Towards Jsc>30mA/cm² with a Si layer of less than 10µm  Develop advanced light trapping for other families of solar cells.  Other light-matter interaction effects, useful for PV (down-conversion…)

  50. Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque • High index contrast periodic structures: • a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Absorber (Si in this talk) Solar cells Back electrode/reflector

More Related