610 likes | 661 Views
Photonic crystals and related nanostructures for solar light management. Christian Seassal , Loïc Lalouat, He Ding, Romain Champory, Ngoc Vu Hoang, Abdelmounaim Harouri, Hai-Son Nguyen, Régis Orobtchouk, Alain Fave, Fabien Mandorlo, Emmanuel Drouard
E N D
Photonic crystals and related nanostructures for solar light management Christian Seassal, Loïc Lalouat, He Ding, Romain Champory, Ngoc Vu Hoang, Abdelmounaim Harouri, Hai-Son Nguyen, Régis Orobtchouk, Alain Fave, Fabien Mandorlo, Emmanuel Drouard INL, Institut des Nanotechnologies de Lyon, UMR 5270 CNRS-Université de Lyon, Ecole Centrale de Lyon, INSA-Lyon, France In collaboration with: Imec (V. Depauw et al), LPICM (P. Roca i Cabarrocas et al), Obducat (K. Lee et al), LPN (S. Collin et al), ILM (A. Pereira et al), U.Namur (O. Deparis et al)
Context: Bulk solar cells, thin film solar cells L’optique pour le photovoltaïque • Efficiency limitations • Si solarcell • Thin film solarcell • Which limitations? • In-couplinglosses R0? AR layer
Context: Bulk solar cells, thin film solar cells Rough surface L’optique pour le photovoltaïque • Efficiency limitations • Si solarcell • Thin film solarcell • Which limitations? • In-couplinglosses • EQE/absorption limited in red/IR A100%?
Context: Bulk solar cells, thin film solar cells L’optique pour le photovoltaïque • Efficiency limitations • Si solarcell • Thin film solarcell • Which limitations? • In-couplinglosses • EQE/absorption limited in red/IR • Thermalization in the UV/blue • No absorption belowEg Third Generation Photovoltaics, Vasilis Fthenakis Ed.
Efficiency enhancement in PV devices L’optique pour le photovoltaïque • In-coupling and absorption control • Using the photonictoolbox: Samuelson U. Lund, 2015 wires/holes/ cones/pyramids Bermel MIT, 2007 Metal/dielectric F. J. Haug EPFL, JPV 2015 guided modes / localized modes Boriskina MIT, 2015
Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque • High index contrast periodic structures: • a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Absorber (Si in this talk) Solar cells Back electrode/reflector
Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque • High index contrast periodic structures: • a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Absorber (Si in this talk) Solar cells Back electrode/reflector
Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque • High index contrast periodic structures: • a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure RE-doped “layer” (AR+converter) Absorber (Si in this talk) Solar cells Back electrode/reflector
Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque • High index contrast periodic structures: • a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Absorber (Si in this talk) Solar cells Back electrode/reflector
Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque • High index contrast periodic structures: • a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Top junction Indermediate reflector Solar cells Bottom junction Back electrode/reflector
How can nanophotonics outperform solar cells? L’optique pour le photovoltaïque Light traping into resonant modes Increased absorption Light localisation Higher absorption, lower pin thickness Radiative losses trapping (direct bandgap cells) • Increased Voc Control of absorption/emission of light, wavelength conversion • Solar cells using UV, IR photons • Increased Jsc • Increased angular acceptance
Efficiency enhancement in PV devices L’optique pour le photovoltaïque • In-coupling and absorption control • Up to whichlimit? « Yablonovitch » limit, 4n² IEEE Trans. Electron. Dev. 1984 weaklyabsorbing medium Lambertianlimit, below 4n² M.A. Green weakly and stronglyabsorbing media
Efficiency enhancement in PV devices L’optique pour le photovoltaïque • In-coupling and absorption control • Up to whichlimit? • Usingthe photonictoolbox
Efficiency enhancement in PV devices L’optique pour le photovoltaïque • Key questions: Which are the best (nano)structures for PV? Optical, electricalproperties How to realizethese at lowcost? Whatis the mostappropriate absorber thickness Real performances of photonizedsolarcells
Outline L’optique pour le photovoltaïque • Introduction: nanophotonics and solarenergy conversion • Photoniccrystals and solarcells • Physics and modal engineering, case of a-Si:H • Thin c-Si solarcellsassisted by PhCs • Multi-periodic/complexabsorbers • Absorption enhancementwith pseudo-disorderednanopatterns • Design rules for solarcellsincludingcomplex patterns • PhCs for wavelength conversion • Rare earthdopedphotonicmetastructures for down shifting • Conclusion and outlook
Outline L’optique pour le photovoltaïque • Introduction: nanophotonics and solarenergy conversion • Photoniccrystals and solarcells • Physics and modal engineering, case of a-Si:H • Thin c-Si solarcellsassisted by PhCs • Multi-periodic/complexabsorbers • Absorption enhancementwith pseudo-disorderednanopatterns • Design rules for solarcellsincludingcomplex patterns • PhCs for wavelength conversion • Rare earthdopedphotonicmetastructures for down shifting • Conclusion and outlook
2-Photonic crystal absorbers • Case of an ultra-thin a-Si:H layer, 100nm • RCWA simulation: absorption spectrum PhC -a=380nm -D/a=0.62 Flat reference Y. Park, Opt. Express 17, 14321 (2009) G. Gomard et al., J. Appl. Phys. 108, 123102 (2010)
2-Photonic crystal absorbers • Case of an ultra-thin a-Si:H layer, 100nm • which mechanisms control the absorption? • For>550nm >80% PhC Flat reference PBG PBG R. Peretti et al., J. Appl. Phys. 111, 123114 (2012)
2-Photonic crystal absorbers • Case of an ultra-thin a-Si:H layer, 100nm • which mechanisms control the absorption? • For>550nm SNOM SEM (weakly) self-localized slow light mode
2-Photonic crystal absorbers • Case of an ultra-thin a-Si:H layer, 100nm • which mechanisms control the absorption? The absorbing medium Abs. coef.= The resonance = mediator Q0=wt0 • For>550nm • Absorption peaks due to Bloch mode resonances • Critical coupling of a single mode: 50% absorption • Additional absorption peaks = Multimode structure • Abs. up to 100% Critical coupling conditions or For a-Si:H : a=1000cm-1 Q0=10-100 Y. Park, Opt. Express 17, 14321 (2009) R. Peretti et al., J. Appl. Phys. 111, 123114 (2012)
2-Photonic crystal absorbers • Case of a 100nm thick a-Si:H layer • which mechanisms control the absorption? • For 450nm • No absorption peak • but... strong absorption increase PhC Flat reference
2-Photonic crystal absorbers • Investigating the physics of absorbing PCs in the blue l-range SNOM experiments Back-side illumination Front-side collection using a SNOM tip FDTD simulations Incident light coupled to vertically guided “channeling modes” Ack.: R. Artinyan, S. Callard G. Gomard et al., APL 104, 051119 (2014)
2-Photonic crystal absorbers • Investigating the physics of absorbing PCs in the blue l-range FDTD simulations 70-85% of incident light coupled “channeling modes”, and absorbed in a-Si:H, but… etched sidewalls G. Gomard et al., APL 104, 051119 (2014)
2-Photonic crystals and solar cells • Case of a 1µm thick c-Si solar cell stack With periodic nano-pyramids Ful parameters scan: (os) 1. Period (Λ) 2. ff=a / Λ (Λ) 3. Thickness of optical spacer (os)
2-Photonic crystals and solar cells • Case of a 1µm thick c-Si solar cell stack Period (Λ): 800 nm, ff: 0.85 Optical spacer (os): 110nm Anti-Reflection Effect More modes: e.g. SBM 23.59 mA/cm² 11.52 mA/cm² • 105% increase
2-Photonic crystals and solar cells • Nanopattern shape optimization: optical assessment Collab.: imec, U. Namur, LPICM, Obducat
2-Photonic crystals and solar cells • Optimized nanopattern: optical assessment, experiments 1µm thick c-Si “Epifree silicon” • Over the Lambertian limit for l>500nm • Over the 4n² limit for specific resonances Collab.: imec, U. Namur, LPICM, Obducat
2-Photonic crystals and solar cells Nanopattern shape optimization: electrical properties • 280-µm-thick FZ p-type wafers, patterned by Nanoimprint, passivated with a-Si:H • Carrier lifetime assessment by Quasi Steady-State PhotoConductance Flat wafer RIE shallow RIE deep ICP TMAH 780 µs 170 µs 44 µs 2200 µs 930 µs • Lifetimes affected by: • The etching process: wet better than dry • Surface area enhancement + conformalityof passivating layer Collab.: imec, U. Namur, LPICM, Obducat
2-Photonic crystals and solar cells Solar cells, 1µm thick c-Si with periodic nanopatterns 4.5% Collab.: imec, U. Namur, LPICM, Obducat
2-Photonic crystals and solar cells Solar cells, 1µm thick c-Si with periodic nanopatterns 6.5% efficiency, 18mA/cm² 4.5% • Strong Jsc increase due to photonic crystals • Still room for improvement to reach simulated Jsc : parasitic absorption
2-Photonic crystals and solar cells Using c-Si prepared by PECVD (LPICM) low cost low T° scalable Collab.: LPICM, LPN, Total • Nanopatterning of PECVD c-Si is feasible Nano Lett 2016, to appear
2-Photonic crystals and solar cells Using c-Si prepared by PECVD (LPICM) low cost low T° scalable Collab.: LPICM, LPN, Total • Still limited efficiency due to absorption in front and back contacts, and limited absorption in IR Nano Lett 2016, to appear
2-Photonic crystals and solar cells How to further increase the efficiency/get closer to the limits? K.X. Wang Stanford, Nano Lett. 2012 X.Q. Meng U. Lyon, Opt. Express 2012 U.W. Paetzold, Jülich, APL 2014 S. Noda U. Kyoto, ACS Phot 2014 • Dual gratings • Periodic controlled disorder disorder
Outline L’optique pour le photovoltaïque • Introduction: nanophotonics and solarenergy conversion • Photoniccrystals and solarcells • Physics and modal engineering, case of a-Si:H • Thin c-Si solarcellsassisted by PhCs • Multi-periodic/complexabsorbers • Absorption enhancementwith pseudo-disorderednanopatterns • Design rules for solarcellsincludingcomplex patterns • PhCs for wavelength conversion • Rare earthdopedphotonicmetastructures for down shifting • Conclusion and outlook
3-Multi-periodic/complex absorbers • What can we expect from disorder? SNOM SEM (weakly) self-localized slow light mode Strongly localized light High confinement in real space. Impact in a solar cell?
3-Multi-periodic/complex absorbers • Increasing the absorption bandwidth in the low absorption domain Pseudo-disordered pattern = supercell of randomly located holes, periodically repeated in a square lattice. L. Lalouat et al., SOLMAT (2016) H. Ding et al., Opt. Express 24, A650 (2016)
3-Multi-periodic/complex absorbers • Increasing the absorption bandwidth in the low absorption domain Supercell lattice: 3x3 Depth (h) cSi Metal Shift Pseudo-disordered pattern = supercell of randomly located holes, periodically repeated in a square lattice.
3-Multi-periodic/complex PhC absorbers • Increasing the absorption bandwidth in the low absorption domain • Experiments: 3x3 supercell pseudo-disordered structure (EBL+RIE) Smaller amplitude peaks Broaden peaks New peaks
3-Multi-periodic/complex PhC absorbers • Increasing the absorption bandwidth in the low absorption domain Square lattice Pseudo-disorder Relative increase Experimental 2.1% 2.7% Theoretical Shift !! Metrics !! over 2% relative increase, in the best cases
3-Multi-periodic/complex PhC absorbers • Design rules: realspaceanalysis2µm thick c-Si H. Ding et al. Opt. Express 2016 2 x 2 3 x 3 4 x 4 holes are evenly distributed high !! Metrics !! Jsc (mA/cm²) low Clusters of holes appeared
3-Multi-periodic/complex PhC absorbers • Design rules: realspaceanalysis2µm thick c-Si H. Ding et al. Opt. Express 2016 2 x 2 3 x 3 4 x 4 • Efficient design of optimized light-trapping structures !! Metrics !!
Outline L’optique pour le photovoltaïque • Introduction: nanophotonics and solarenergy conversion • Photoniccrystals and solarcells • Physics and modal engineering, case of a-Si:H • Thin c-Si solarcellsassisted by PhCs • Multi-periodic/complexabsorbers • Absorption enhancementwith pseudo-disorderednanopatterns • Design rules for solarcellsincludingcomplex patterns • PhCs for wavelength conversion • Rare earthdopedphotonicmetastructures for down shifting • Conclusion and outlook
Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque • High index contrast periodic structures: • a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Absorber (Si in this talk) Solar cells Back electrode/reflector
Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque • High index contrast periodic structures: • a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure RE-doped “layer” (AR+converter) Absorber (Si in this talk) Solar cells Back electrode/reflector
4-PhC for wavelength conversion • Rare-earthdopedphotonicmeta-structure Rare earth doped layer e.g. Eu-doped Y2O3 SiNx Photonic crystal LDS Layer Visible photons (611 nm) UV photons (~ 400nm) Collab.: B. Moine, A. Pillonnet, A. Pereira
4-PhC for wavelength conversion • Rare-earthdopedphotonicmeta-structure, luminescence measurements with an integrating sphere L=250nm and r=80nm Collab.: N.-V. Hoang, B. Moine, A. Pillonnet, A. Pereira Strong Enhancement in Eu3+ emission → Expected improvement of down shifting efficiency N.-V. Hoang et al. (in preparation)
4-PhC for wavelength conversion • Photonic resonances at absorption wavelengths: Measured Transmittance RCWA Simulation Histogram from SEM images (1mm2) Bloch modes resonances • Clear evidence of the resonant modes • Transmittance remains high at longer wavelength N.-V. Hoang et al. (in preparation)
4-PhC for wavelength conversion • Photonic modes at emission wavelengths: Excitation (394 nm) q Emission (611 nm) • Clear evidence of the resonant modes • Oblique emission 611 nm N.-V. Hoang et al. (in preparation)
5-Conclusions, outlook In-plane Bloch modes and vertical “channeling” modes PhC absorbers Mediators to control incident light capture and absorption Enables to increase Abs/JSC by 100% Photonic crystal solar cells Dedicated processes developped: nanopatterning, passivation Positive impact of controlled perturbations Experimental assessment of the integrated absorption increase in a- Si:H and c-Si based stacks. Strong enhancement of down shifting thanks to PhCs x50, expected PV conversion efficiency Still many work to do in photonics: Towards Jsc>30mA/cm² with a Si layer of less than 10µm Develop advanced light trapping for other families of solar cells. Other light-matter interaction effects, useful for PV (down-conversion…)
Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque • High index contrast periodic structures: • a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Absorber (Si in this talk) Solar cells Back electrode/reflector