320 likes | 366 Views
Chapter 5. The Gaseous State. Properties of Gases. can be compressed exert pressure on whatever surrounds them expand into whatever volume is available easily diffuse into one another
E N D
Chapter 5 The Gaseous State Dr. S. M. Condren
Properties of Gases • can be compressed • exert pressure on whatever surrounds them • expand into whatever volume is available • easily diffuse into one another • can be described in terms of their temperatures and pressure,the volume occupied, and the amount (number of molecules or moles) present Dr. S. M. Condren
Mercury Barometer Dr. S. M. Condren
Composition of Air at Sea Level Dr. S. M. Condren
Important Units of Pressure Conversion factor to learn Dr. S. M. Condren
Boyle’s Law At constant temperature and mass of gas: Va1/P V = a * 1/P where a is a proportionality constant thus VP = a V1P1 = a = V2P2 V1P1 = V2P2 Dr. S. M. Condren
Boyle’s Law Dr. S. M. Condren
Boyle’s Law Dr. S. M. Condren
Effect of Pressure Differential Dr. S. M. Condren
Charles’ Law At constant pressure and mass of gas: VaT V = b * T where b is a proportionality constant V/T = b V1/T1 = b = V2/T2 V1/T1 = V2/T2 Dr. S. M. Condren
Charles’ Law Dr. S. M. Condren
Combined Gas Law At constant mass of gas VaT/P V = d * (T/P) where d is a proportionality constant (VP)/T = d V1P1 = d = V2P2 T1 T2 V1P1 = V2P2 T1 T2 Dr. S. M. Condren
Avogadro’s Law At constant pressure and temperature Van V = c * n where c is a proportionality constant V/n = c V1/n1 = c = V2 /n2 V1/n1 = V2 /n2 Dr. S. M. Condren
Ideal Gas Law Va(n * T)/P V = R * (n * T)/P where R is proportionality constant P * V = n * R * T (P*V)/(n*T) =R Thus, (P1*V1)/(n1*T1) = (P2*V2)/(n2*T2) Dr. S. M. Condren
What will be volume of an ideal gas at absolute zero? - 10 mL/mole 0 mL/mole 10 mL/mole Dr. S. M. Condren
Ideal Gas Constant R = 0.08205 L*atm/mol*K R has other values for other sets of units. R = 82.05 mL*atm/mol*K = 8.314 J/mol*K = 1.987 cal/mol*K Dr. S. M. Condren
Molar Massfrom Gas Density gas density = #g/V = d PV = nRT where n = #g/MM PV = (#g/MM)*RT MM = (#g*R*T)/(P*V) MM = (#g/V)*((R*T)/P) = (d*R*T)/P Dr. S. M. Condren
Dalton’s Lawof Partial Pressures The total pressure of a mixture of gases is equal to the sum of the pressures of the individual gases (partial pressures). PT = P1 + P2 + P3 + P4 + . . . . where PT => total pressure P1 => partial pressure of gas 1 P2 => partial pressure of gas 2 P3 => partial pressure of gas 3 P4 => partial pressure of gas 4 Dr. S. M. Condren
Dalton’s Law of Partial Pressure Dr. S. M. Condren
Collecting Gases over Water Dr. S. M. Condren
Example: What volume will 25.0 g O2 occupy at 20oC and a pressure of 0.880 atm? (25.0 g)(1 mol) n = ---------------------- = 0.781 mol (32.0 g) V =?; P = 0.880 atm; T = (20 + 273)K = 293K R = 0.08205 L*atm/mol*K V = nRT/P = (0.781 mol)(0.08205L*atm/mol*K)(293K) 0.880atm = 21.3 L Dr. S. M. Condren
ExampleA student generates oxygen gas and collects it over water. If the volume of the gas is 245 mL and the barometric pressure is 758 torr at 25oC, what is the volume of the “dry” oxygen gas at STP? Pwater = 23.8 torr at 25oC; PO2 = Pbar - Pwater = (758 - 23.8) torr = 734 torr P1= PO2 = 734 torr; P2= SP = 760. torr V1= 245mL; T1= 298K; T2= 273K; V2= ? (V1P1/T1) = (V2P2/T2) V2= (V1P1T2)/(T1P2) = (245mL)(734torr)(273K) (298K)(760.torr) = 217mL Dr. S. M. Condren
Kinetic Molecular Theory Matter consists of particles (atoms or molecules) in continuous, random motion. Dr. S. M. Condren
Kinetic Molecular Theory: Gases • particles in continuous, random, rapid motion • collisions between particles are elastic • volume occupied by the particles is negligibly small effect on their behavior • attractive forces between particles have a negligible effect on their behavior • gases have no fixed volume or shape, take the volume and shape of the container Dr. S. M. Condren
Maxwell’s Distribution of Speeds Dr. S. M. Condren
Real Gases • have a finite volume at absolute zero • have attractive forces between gas particles Dr. S. M. Condren
Van der Waals Equation (P + a/V2)(V - b) = nRT where a => attractive forces b => residual volume Dr. S. M. Condren
Carbon Dioxide and Greenhouse Effect Dr. S. M. Condren
Some Oxides of Nitrogen • N2O • NO • NO2 • N2O4 2 NO2 = N2O4 brown colorless • NOx Dr. S. M. Condren
Air Pollution in Los Angles Dr. S. M. Condren