1 / 11

Triangle Congruence Postulates and Proofs

Learn and practice using SSS, ASA, SAS postulates to prove triangle congruence; solve examples with detailed steps for understanding. Explore online homework resources for further practice.

denton-moss
Download Presentation

Triangle Congruence Postulates and Proofs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Determine which postulate can be used to prove that the triangles are congruent. If it is not possible to prove congruence, choose not possible. A. SSS B. ASA C. SAS D. not possible 5-Minute Check 1

  2. Determine which postulate can be used to prove that the triangles are congruent. If it is not possible to prove congruence, choose not possible. A. SSS B. ASA C. SAS D. not possible 5-Minute Check 2

  3. Determine which postulate can be used to prove that the triangles are congruent. If it is not possible to prove congruence, choose not possible. A. SSA B. ASA C. SSS D. not possible 5-Minute Check 4

  4. Concept

  5. Use ASA to Prove Triangles Congruent Example 1

  6. Fill in the blank in the following paragraph proof. A. SSS B. SAS C. ASA D. AAS Example 1

  7. Concept

  8. Write a paragraph proof. __ ___ Proof: NKL  NJM, KL  MN, and N  N by the Reflexive property. Therefore, ΔJNMΔKNL by AAS. By CPCTC, LN MN. __ ___ Use AAS to Prove Triangles Congruent Example 2

  9. The curtain decorating the window forms 2 triangles at the top. B is the midpoint of AC. AE = 13 inches and CD = 13 inches. BE and BD each use the same amount of material, 17 inches. Which method would you use to prove ΔABE  ΔCBD? A. SSS B. SAS C. ASA D. AAS Example 3

  10. Concept

  11. Assignment: Online homework from: www.thatquiz.org Quick! To the computer lab!

More Related