340 likes | 494 Views
繰り込み不可能な超対称 SU(5) 模型における 繰り込み群方程式による フレーバーの破れ. 山下 敏史 ( 名古屋大学 ). 2009年11月27 @ICRR. based on arXiv:0903.2793[hep-ph] with F. Borzumati (台湾国立大学). Yukawa. LFV. Introduction & Conclusion. LFV vs. QFV in SUSY-GUTs. RGE. Seesaw mechanism. F. Borzumati & A. Masiero (1986).
E N D
繰り込み不可能な超対称SU(5)模型における繰り込み群方程式によるフレーバーの破れ繰り込み不可能な超対称SU(5)模型における繰り込み群方程式によるフレーバーの破れ 山下 敏史 (名古屋大学) 2009年11月27 @ICRR based on arXiv:0903.2793[hep-ph] with F. Borzumati (台湾国立大学)
Yukawa LFV Introduction & Conclusion • LFV vs. QFV in SUSY-GUTs RGE Seesaw mechanism F. Borzumati & A. Masiero (1986)
Yukawa LFV QFV RGE Introduction & Conclusion • LFV vs. QFV in SUSY-GUTs RGE Seesaw mechanism affected? Baek, Goto, Okada & Okumura (2001) Moroi (2000) Grand Unification realistic?? Fermion Spectra Proton Decay New Physics above GUT
Wrong GUT relation: NRO can suppress only Yukawa of . Introduction & Conclusion • Fermion Spectrum affects only 1st & 2nd generations Non-Renormalizable Operators GUT breaking effects • Proton Decay is allowed. D.E. Costa & S. Wiesenfelds (2003)
Yukawa LFV QFV Introduction & Conclusion • LFV vs. QFV in SUSY-GUTs RGE Seesaw mechanism affected? RGE Grand Unification Fermion Spectra Proton Decay NROs New Physics above GUT
RGE Introduction & Conclusion • How to deal? infinite divergences NRO infinite new operators • Approximation Higher-dim terms : higher suppression by and/or We can neglect the higher terms! S. Baek, T. Goto, Y. Okada & K. Okumura (2001) An O(s^2) analysis was done.
MSSM + Introduction & Conclusion • Setup MSSM + … SU(5) w/ NROs • references S. Baek, T. Goto, Y. Okada & K. Okumura (2001) N. Arkani-Hamed, H. C. Cheng & L. J. Hall (1996) J. Hisano, D. Nomura, Y. Okada, Y. Shimizu & M. Tanaka (1998) Bolzumati & T.Y. (2009) generalized study with a dim.5 NRO. RGE w/ effective couplings.
superCKM basis Introduction & Conclusion • conclusion : not affected leading effect : approximation : P.Ko, J.h.Park & M.Yamaguchi (2008) S. Baek et.al. (2001)
Plan • Introduction & Conclusion • RGEs in renormalizable models • RGEs in non-renormalizable models • Effective couplings • Universality of B.C. • Summary
RGEs in renormalizable models • general setup field redefinition
RGEs in renormalizable models • Feynman rule : propagator field redefinition
RGEs in renormalizable models • Feynman diagram
RGEs in renormalizable models • corrections field redefinition superpotential terms :
Plan • Introduction & Conclusion • RGEs in renormalizable models • RGEs in non-renormalizable models • Effective couplings • Universality of B.C. • Summary
RGEs in NR models • general setup field redefinition
RGEs in NR models • Feynman diagram
RGEs in NR models • Approximation neglect O(s^3) contributions one-step approximation : S. Baek, T. Goto, Y. Okada & K. Okumura (2001)
Plan • Introduction & Conclusion • RGEs in renormalizable models • RGEs in non-renormalizable models • Effective couplings • Universality of B.C. • Summary
Effective couplings • definition • SU(5) example forgotten in some literatures used in the matching to MSSM. These can be used also at loop level!
Effective couplings • Feynman diagram <24H> <X> Anom. dim.s are given as in renormalizable model, by using the effective couplings.
Effective couplings • loop corrections ignored in the literatures ??? Note also the running of the VEV. Bolzumati & T.Y. (2009) These holds in general.
H Effective couplings • flows of VEVs Field redefinition: if no vertex corrections : independent of the Kahler Potential def. of VEVs:
Vacuum structure • general setup depends on Kahler? independent of Kahler EOM :
Effective couplings • loop corrections ignored in the literatures Note also the running of the VEV. Bolzumati & T.Y. (2009) These holds in general.
Effective couplings • used approximation does not cancel 1/Mcut O(E/Mcut )? • remark Colored Higgs Yukawa has peculiar contributions, of O(s^2), affecting FVs at O(s^3), via add. loop.
Plan • Introduction & Conclusion • RGEs in renormalizable models • RGEs in non-renormalizable models • Effective couplings • Universality of B.C. • Summary
Universality of B.C. • in MSSM The universal B.C. is often used, at a high scale. • in non-renormalizable models How should it be generalized? field-independence “weak” universality for each dimensionality?
This does not ensure . Universality of B.C. • weak universality • This is not stable under the field redefinition to minimize the Kahler potential :
Universality of B.C. • weak universality
Universality of B.C. • strong universality
This does ensure ! Universality of B.C. • strong universality in superpotential
Universality of B.C. • strong universality in Kahler potential impose this minimized by the field redefinition w/
The SUSY should couple to the overall potentials. Universality of B.C. minimal SUGRA • strong universality in Kahler potential # parameters : 3 (apart from the gaugino mass )
Summary • We discuss RGEs in NR models are. • O(s^2) contributions can be controlled. • We propose (formulate) another treatment via effective couplingis • We see how universality is generalized. S. Baek, T. Goto, Y. Okada & K. Okumura (2001) Cf. N. Arkani-Hamed et.al. (1996), J. Hisano et.al. (1998) • In paper F. Borzumati & T. Y. (2009) Non-universal B.C. are also investigated. Some discussion on Proton decay is given. All the relevant RGEs are given for type I, II, III.