1 / 28

EQUILBRIUM OF Acids and Bases

EQUILBRIUM OF Acids and Bases. Chapter 17. Water. AUTOIONIZATION. H 2 O can function as both an ACID and a BASE. Equilibrium constant for water = K w K w = [H 3 O + ] [OH - ] = 1.00 x 10 -14 at 25 o C. Water. K w = [H 3 O + ] [OH - ] = 1.00 x 10 -14 at 25 o C

derick
Download Presentation

EQUILBRIUM OF Acids and Bases

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EQUILBRIUM OF Acids and Bases Chapter 17

  2. Water AUTOIONIZATION H2O can function as both an ACID and a BASE. Equilibrium constant for water = Kw Kw = [H3O+] [OH-] = 1.00 x 10-14 at 25 oC

  3. Water Kw = [H3O+] [OH-] = 1.00 x 10-14 at 25 oC In a neutralsolution [H3O+] = [OH-] so [H3O+] = [OH-] = 1.00 x 10-7 M Autoionization

  4. [H3O+], [OH-] and pH A common way to express acidity and basicity is with pH pH = - log [H3O+] In a neutral solution, [H3O+] = [OH-] = 1.00 x 10-7 at 25 oC pH = -log (1.00 x 10-7) = - (-7) = 7

  5. [H3O+], [OH-] and pH What is the pH of the 0.0010 M NaOH solution? [H3O+] = 1.0 x 10-11 M pH = - log (1.0 x 10-11) = 11.00 General conclusion — Basic solution pH > 7 Neutral pH = 7 Acidic solution pH < 7

  6. [H3O+], [OH-] and pH If the pH of Coke is 3.12, it is ________. log [H3O+] = - pH Take antilog and get [H3O+] = 10-pH [H3O+] = 10-3.12 = 7.6 x 10-4 M

  7. pX Scales In general pX = -log X pOH = - log [OH-] pH = - log [H+] pKw = 14 = pH + pOH

  8. Weak Base Step 3. Calculate pH [OH-] = 4.2 x 10-4 M so pOH = - log [OH-] = 3.37 Because pH + pOH = 14, pH = 10.63

  9. Equilibria Involving Weak Acids and Bases Aspirin is a good example of a weak acid, Ka = 3.2 x 10-4

  10. Weak Acids and Bases AcidConjugate Base acetic, CH3CO2H CH3CO2-, acetate ammonium, NH4+ NH3, ammonia bicarbonate, HCO3- CO32-, carbonate A weak acid (or base) is one that ionizes to a VERY small extent (< 5%).

  11. Weak Acids and Bases acetic acid, CH3CO2H (HOAc) HOAc + H2O D H3O+ + OAc- Acid Conj. base (K is designated Ka for ACID) [H3O+] and [OAc-] are SMALL, Ka << 1.

  12. Equilibrium Constants for Weak Acids Weak acid has Ka < 1 Leads to small [H3O+] and a pH of 2 - 7

  13. 0.0001 M Calculations with Equilibrium Constants 0.003 M pH of an acetic acid solution. What are your observations? 0.06 M 2.0 M a pH meter, Screen 17.9

  14. Equilibria Involving A Weak Acid You have 1.00 M HOAc. Calc. the pH. And the equilibrium concs. of EACH Step 1. ICE table. [HOAc] [H3O+] [OAc-] I C E

  15. Equilibria Involving A Weak Acid [HOAc] [H3O+] [OAc-] I 1.00 0 0 C -x +x +x E 1.00-x x x Note that we neglect [H3O+] from H2O.

  16. Equilibria Involving A Weak Acid Step 2. Write Ka expression This is a quadratic. Use quadratic formula or method of approximations (see Appendix A). HOWEVER

  17. Equilibria Involving A Weak Acid Assume x is very small because Ka is so small. Now we can more easily solve this approximate expression.

  18. Equilibria Involving A Weak Acid Step 3. Solve Kaapproximate expression x = [H3O+] = [OAc-] = [Ka • 1.00]1/2 x = [H3O+] = [OAc-] = 4.2 x 10-3 M pH = -log (4.2 x 10-3) = 2.37

  19. Equilibria Involving A Weak Acid For many weak acids [H3O+] = [conj. base] = [Ka • Co]1/2 where C0 = initial conc. of acid Useful Rule of Thumb: If 100•Ka < Co, then [H3O+] = [Ka•Co]1/2

  20. Equilibria Involving A Weak Acid Calculate the pH of a 0.0010 M solution of formic acid, HCO2H. HCO2H + H2O D HCO2- + H3O+ Ka = 1.8 x 10-4 Approximate solution [H3O+] = [Ka • Co]1/2 = 4.2 x 10-4 M, pH = 3.4 Exact Solution [H3O+] = [HCO2-] = 3.4 x 10-4 M [HCO2H] = 0.0010 - 3.4 x 10-4 = 0.0007 M pH = 3.5

  21. Weak Bases

  22. Equilibrium Constants for Weak Bases Weak base has Kb < 1 Leads to small [OH-] and a pH of 12 - 7

  23. Equilibria Involving A Weak Base You have 0.010 M NH3. Calc. the pH. NH3 + H2O D NH4+ + OH- Kb = 1.8 x 10-5 Step 1; ICE table [NH3] [NH4+] [OH-] I C E

  24. Weak Base Step 1. ICE table [NH3] [NH4+] [OH-] I 0.010 0 0 C -x +x +x E 0.010 - x x x

  25. Weak Base Step 2. Solve the equilibrium expression Assume x is small (100•Kb < Co), so x = [OH-] = [NH4+] = 4.2 x 10-4 M [NH3] = 0.010 - 4.2 x 10-4 ≈ 0.010 M The approximation is valid !

  26. Acids Conjugate Bases

  27. Relation of Ka, Kb, [H3O+] and pH

More Related