190 likes | 346 Views
LGS for SAM Design Review September 2007, La Serena. LGS for SAM Optical Design. R.Tighe, A.Tokovinin. Laser Box on one of the serrurier trusses at bent-cass port #2 at 45Deg from IR Nasmyth. Working solution:
E N D
LGS for SAM – PDR – Optics LGS for SAM Design Review September 2007, La Serena LGS for SAM Optical Design R.Tighe, A.Tokovinin.
LGS for SAM – PDR – Optics Laser Box on one of the serrurier trusses at bent-cass port #2 at 45Deg from IR Nasmyth. Working solution: Laser control and cooler position (on the ledge at the IR Nasmyth pillow-block level). IR Nasmyth Optical Nasmyth Beam Transfer Laser Launch Telescope Note: a 7m long Laser umbilical cable has been tested. It can be laid out from the base of the truss directly onto the IR-Nasmyth cable-wrap mobile section passing over the elevation bearing and reaching the pillow-block (next picture). The LGS System on SOAR
LGS for SAM – PDR – Optics Laser cable layout fit-test (yellow line). The Laser control & Cooler Rack. Cable length = 7m. The Laser umbilical cable handling on SOAR
LGS for SAM – PDR – Optics Cable-wrap; mobile truss Cable-wrap;static Yellow line is the 7m Laser Umbilical Cable Layout IR Nasmyth Focus Rack for laser control, power and Cooler at pillow-block level Laser Cable and Rack at IR-Nasmyth
LGS for SAM – PDR – Optics Requirements: • LLTm1: R=1000mm, F=300mm (pupil). • GB 1/e² diameter footprint on LLTm1=260mm. LLT m3 m4 Decided: • LLTm2: R=30mm, F=15mm. Laser Box SOAR Elevation Ring IR The LGS system (GB propagation)
LGS for SAM – PDR – Optics 8mm Gaussian Beam Exit Window Soleil-Babinet Compensator 8x Beam Expander Beam ProfilerCCD Alignment Mirrors Am1&Am2 (coating450-700nm ) 355nm laser-line Dump switch-Mirror UV Laser Beam Dump Intra-cavity Shutter Blue Alignment Laser( 473nm) (or better400-420nm?) 355nm Tripled Nd:Yag Laser VIS UV LLT Laser Launch Telescope Laser-Box Beam Transfer The LGS system
LGS for SAM – PDR – Optics • The optimized LLT: LLTm1: Diameter(mm) Radius(mm) Conic 300 1000 -0.99979 LLTm2: Diameter(mm) Radius(mm) Conic 15 15 -1.00001 13 to 24mm1/e² diameter GB Image at 7 to 14km from SOAR M1, respectively. 30Arcsec Field (on sky) LLT The Laser Launch Telescope 485mm
LGS for SAM – PDR – Optics • The working LLT: LLTm1 (pivots around center of curvature of LLTm2): Diameter(mm) Radius(mm) Conic 300 1000 -0.9702 LLTm2: Diameter(mm) Radius(mm) Conic 15 15 -0.0 Comatic PSF 13 to 24mm1/e² diameter GB Image at 7 to 14km from SOAR M1, respectively. OPDComa=57nm OPD rms = 59nm OPD p-v =115nm Strehl Ratio= 0.88 30Arcsec Field (on sky) LLT The Laser Launch Telescope 485mm
LGS for SAM – PDR – Optics ~8mm Gaussian Beam Exit Window Soleil-Babinet Compensator 8x Beam Expander Beam ProfilerCCD Alignment Mirrors Am1&Am2 (coating450-700nm ) 355nm laser-line Dump switch-Mirror UV Laser Beam Dump ~1.5m Intra-cavity Shutter Blue Alignment Laser (473nm) (or better400-420nm?) VIS 355nm Tripled Nd:Yag Laser UV The Laser-Box • The Laser (Tripled Nd:Yag, 355nm): M²<1.2 => spot roundness better than 85%. Waist (single mode radius) = 0.13mm (420mm behind laser output). Waist (mixed modes radius) = 0.1424mm. Divergence 1.8mRad. • The Beam Expander (355nm): Galilean, 2-8x magnification. Focusing on sliding rails. • The S-B compensator (UV): 8-500-UV-25 (10) from Special Optics CA=25 (or10)mm, Max. Retardation=400nm, Resolution=0.5nm Space needed(Lxwxh)≈110x229.4x165.4mm
LGS for SAM – PDR – Optics LLT • LLTm1: slow (~1Hz) active Qx, Qy. Pointing correction loop. m3 • m3: one-time Qx, Qy adjustments. Aligns LLT optical axis to Beam Transfer. m4 • m4: slow active Qx, Qy. Centers the beam on m3. • Laser box: Qx, Qy as a whole. Centers the beam on m4. Laser Box SOAR Elevation Ring IR The Beam-Transfer
LGS for SAM – PDR – Optics 8mm GB circularly polarized SAM LGS WFS S-B B-E WFS Field Stop l/4 Retarder The Goal: • >90% LGS return flux reaches the S-H CCD. VIS UV Laser Linear pol. horizontal Polarization Issues ~l/4 Goal: >90% LGS return flux reaches the S-H CCD.
LGS for SAM – PDR – Optics p=p/2 The Polarization Strategy • The Laser pol. is Linear Horizontal. • The S-B is ~l/4 (adjusted in lab). • The S-B is adjusted so that the back-scatter from LGS collected by the SOAR telescope is Circularly Polarized at Nasmyth. • The SAM common path and the WFS Optics may introduce some s-p de-phase. • This phase retardation is constant and will be measured. If the de-phase error ≥ l/14 flux loss ≥ ~10%), it can be compensated in the WFS path.
Merit function: • GB waist 1/e² diam.=8mm on LLTm2. • GB waist at 10km from SOAR M1. • Image Strehl =0.8. • Image off-axis = 30”. Table 6. Summary of tolerancing considerations for the LGS optical components. The Optical Tolerances LGS for SAM – PDR – Optics
The Opto-mechanical Specs Table 11. The complete LGS components positional, angular and adjustment specs for mechanical engineering. ______________________________________________________________________________________ Component Pos.Tol.(mm) Pos.Range (mm) Pos.Res(mm) Angular Tol.(º) Tilt Range(º) Tilt Res.(º) ______________________________________________________________________________________ Laser Head 0.1 N/A N/A N/A N/A N/A Dump-Switch Mirror 0.1 N/A N/A 0.06 In-Out (~30º) (Repeat.~0.06º) Blue Laser 0.1 N/A N/A 0.06 N/A N/A Am1 0.1 N/A N/A 0.06 ±2 N/A Am2 0.1 In-Out (30mm) (Repeat.~10um) 0.06 ±2 N/A B-E 0.057 ±2 0.050 0.06 ±1 0.0032 S-B comp. 0.1 N/A N/A N/A N/A N/A Window 0.1 N/A N/A 0.06 N/A N/A Laser-Box (as a unit) 0.1 N/A N/A 0.06 ±0.5 0.0027 m4 0.1 N/A N/A 0.06 ±2 0.0032 m3 0.1 N/A N/A 0.06 ±2 0.0035 LLTm2 0.073 (Z±0.2,washer/spacers) (Z=0.1washers) 0.06 N/A N/A LLTm1 0.073 ±0.5 0.0005 0.0045 ±0.057 0.00005 LLT (as a unit) N/A N/A N/A 0.0086 ±0.167 0.0014 LLTm1-LLTm2 (z-axis) 0.1 ±0.1 0.0025 N/A N/A N/A _____________________________________________________________________________________ LGS for SAM – PDR – Optics
The Coatings for LGS Optics LGS for SAM – PDR – Optics
Plot1 (Y3) Plot2 (BBDS) Plot4 Plot3 (BBD1) The Coatings for LGS Optics LGS for SAM – PDR – Optics
Plot5 The Coatings for LGS Optics LGS for SAM – PDR – Optics
LGS for SAM – PDR – Optics Damage Thresholds for LGS Optical Surfaces If Absorption fraction of the optical element is a: (Where a= (1-R) for mirrors and (1-T) for lenses). And df: is the T(orR) loss due to absorption by dust. Safety Factor: (sfclean)= a(Dam.Thres.power)/a(GBpower) Safety Factor: (sfdusty)= Damage Threshold/((1-df)(GB)+df/a(GB)) Conclusion: Only element with some risk (in ~6month period) is the laser beam-dump switching mirror.
LGS for SAM – PDR – Optics Issues for Discussion and To Do List Discussion: • LLTm1 tip-Tilt actuators. • LLTm2 focusing. • LLTm1 to m2 spacing control ? To Do: • LLTm2: last search for a paraboloidal mirror. • Do the Optics Procurement. • Do the Lab experiments for laser beam and polarization control.