1 / 9

Algorytm Dijkstry (przykład)

Algorytm Dijkstry (przykład). Będziemy wyznaczać najkrótsze ścieżki pomiędzy wyróżnionym wierzchołkiem (źródłem), a wszystkimi pozostałymi wierzchołkami w grafie. V = { 1 ,2,3,4,5,6} E = {(1-2,3),(1-4,3),(2-3,2),(3-1,6),(3-6,1),(4-5,1),(5-3,1),(5-6,2),(6-4,3)}. Algorytm Dijkstry (przykład CD.).

derry
Download Presentation

Algorytm Dijkstry (przykład)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Algorytm Dijkstry (przykład) Będziemy wyznaczać najkrótsze ścieżki pomiędzy wyróżnionym wierzchołkiem (źródłem), a wszystkimi pozostałymi wierzchołkami w grafie. V = {1,2,3,4,5,6} E = {(1-2,3),(1-4,3),(2-3,2),(3-1,6),(3-6,1),(4-5,1),(5-3,1),(5-6,2),(6-4,3)}

  2. Algorytm Dijkstry (przykład CD.) Tworzymy dwa zbiory S (wierzchołki, dla których są policzone najkrótsze ścieżki) oraz Q (wierzchołki jeszcze nie przetworzone). Zbiór S jest początkowo pusty. Zbiór Q obejmuje wszystkie wierzchołki grafu.

  3. Algorytm Dijkstry (przykład KROK 1/7) Dla każdego wierzchołka v ustawiamy d(v) ← ∞. Dla wybranego wierzchołka vo ustawiamy d(vo)← 0. Ustawiamy również p(v) ← 0.

  4. Algorytm Dijkstry (przykład KROK 2/7) W zbiorze Q szukamy wierzchołka o najmniejszym d - wierzchołek 1 - przenosimy go do zbioru S. Następnie sprawdzamy wartość d jego sąsiadów (wierzchołki 2 i 4). Jeśli ich d jest większe od kosztu d(1) + w(1,v), to modyfikujemy d i p dla tych wierzchołków.

  5. Algorytm Dijkstry (przykład KROK 3/7) W zbiorze Q szukamy wierzchołka o najmniejszym d. Są dwa takie wierzchołki: 2 i 4 o d=3. Wybieramy arbitralnie wierzchołek nr 2 i przenosimy go do zbioru S. Wierzchołek 2 posiada tylko jednego sąsiada - 3. Modyfikujemy odpowiednio d[3] i p[3]

  6. Algorytm Dijkstry (przykład KROK 4/7) W zbiorze Q szukamy wierzchołka o najmniejszym d. Teraz jest to wierzchołek 4 o d[4] = 3. Przenosimy go do zbioru S. Wierzchołek 4 posiada tylko jednego sąsiada - 5. Modyfikujemy odpowiednio d[5] i p[5].

  7. Algorytm Dijkstry (przykład KROK 5/7) W zbiorze Q szukamy wierzchołka o najmniejszym d. Jest to wierzchołek 5 o d[5] = 4. Przenosimy go do zbioru S. Wierzchołek 5 posiada dwóch sąsiadów: 3 i 6. Ponieważ d[3]=5 jest takie samo jak d[5] + waga(5-3) = 4+1=5, nie modyfikujemy parametrów d i p dla wierzchołka 3. Do modyfikacji jest tylko wierzchołek 6.

  8. Algorytm Dijkstry (przykład KROK 6/7) W zbiorze Q szukamy wierzchołka o najmniejszym d. Jest to wierzchołek 3 o d[3] = 5. Przenosimy go do zbioru S. Wierzchołek 3 posiada dwóch sąsiadów: 1 i 6. Ponieważ wierzchołek 1 jest już w zbiorze S, to nie bierzemy go pod uwagę. Drugi wierzchołek posiada d[6]=6, czyli takie samo jak d[3]+waga(3-6)=5+1=6. Nie modyfikujemy zatem wierzchołka 6.

  9. Algorytm Dijkstry (przykład KROK 7/7) Do zbioru S przenosimy ostatni wierzchołek z Q. Wierzchołek ten nie posiada sąsiadów w Q połączonych z nim krawędzią, dlatego nic nie modyfikujemy. Ponieważ zbiór Q stał się pusty, algorytm kończymy.

More Related