1 / 15

Neural Network Similarity

Neural Network Similarity. Joel Lehman. Outline. Genetic Algorithms Neural Networks Evolving Neural Networks Neural Network Similarity Problem NP-Completeness Proof. Genetic Algorithms. Inspired by the apparent power of Natural Evolution Usually applied to optimization problems

derry
Download Presentation

Neural Network Similarity

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Neural Network Similarity Joel Lehman

  2. Outline • Genetic Algorithms • Neural Networks • Evolving Neural Networks • Neural Network Similarity Problem • NP-Completeness Proof

  3. Genetic Algorithms • Inspired by the apparent power of Natural Evolution • Usually applied to optimization problems • Consists of: • A population of candidate solutions • A mechanism for generating variation • A measure of goodness used for selection

  4. Neural Networks • Computational abstraction of biological brains • Consist of nodes (neurons) and connections (synapses) • Can be drawn as a weighted digraph

  5. Neural Networks

  6. Evolving Neural Networks • Intelligence on earth evolved in form of biological brains • Using GA+NN is a very rough abstraction of how intelligence evolved • Can be used in many tasks • Robot control, game playing, classification, etc. • How to define genetic operators that operate on NN?

  7. Evolving Neural Networks • Use a ‘direct encoding’ • Represent NN directly as a graph • Mutation is easy • Simply add new connections, nodes, or change connection weights • Crossover is hard • How to recognize what parts of one NN correspond to parts of another • Without this idea of ‘homology’ naïve crossover will likely just destroy the functionality of both NN

  8. Neural Network Similarity Problem • Basically, question is: what parts of one NN are relatively the same to parts of a second NN • If we know this, we can intelligently do crossover to create meaningful offspring NN

  9. Neural Network Similarity Problem • A Neural Network is composed of a 4-tuple: (Input Nodes, Output Nodes, Hidden Nodes, Connections) • Two NNs are ‘compatible’ if they share same Input and Output Nodes • A subnetwork of a neural network A is a NN compatible with A, with hidden nodes and connections that are subsets of those in A

  10. Neural Network Similarity Problem • Given two compatible NNs, N1 and N2, an integer k, and a real number l • Does there exist a subnetwork NS1 of N1 with at least k connections isomorphic (disregarding connection weights) to a subnetwork NS2 of N2 such that the summed difference in connection weights between NS1 and NS2 are less than l.

  11. NP Completeness Proof • First we must show it is in NP. • A witness can give the partial map between hidden nodes and connections in N1 to N2. It can then be verified in polynomial time that the conditions of k and l are satisfied

  12. NP Completeness Proof • Basically this is an augmented version of subgraph isomorphism • Subgraph isomorphism • Given two graphs G1, G2, does there exist a subgraph of G1 with at least k edges that is isomorphic to a subgraph of G2?

  13. NP Completeness Proof • Easy to map an instance of SGI into NNSP: • Create a NN from each graph by the following: • Set input and output nodes to null set • Vertices in the graph translate directly to hidden nodes • Edges in the graph translate directly to connections in the NN all with identical weights • K in NNSP is set to k from SGI • L in NNSP is set to 0 • Intuitively we know this works • We’ve stripped away all the augmentations

  14. NP Completeness Proof • Given yes instance of SGI • The mapped instance of NNSP will also have an subgraph isomorphism, the NNs are isomorphic to the given graphs, and the L criterion is satisfied • Given yes instance of NNSP • We know there are no hidden/input nodes • All weights are 1.0 (and thus insignificant to L criterion) • The isomorphism between NN/Graph and the decision question means there must be a SGI of size k

  15. Questions?

More Related