350 likes | 363 Views
Explore the theoretical and practical aspects of graph layout problems in various domains such as VLSI circuit design, graph drawing, and optimization of networks for parallel computer architectures. Delve into historical perspectives and known results regarding MINCUT, bandwidth, and other layout challenges. Discover key constructions, lower bounds, and results for square and rectangular toroidal grids.
E N D
Several Graph Layout Problems for Grids Vladimir Lipets Ben-Gurion University of the Negev Advisors: Prof. Daniel Berend Prof. Ephraim Korach
Graph layout problems A large number of theoretical and practical problems in various areas may be formulated as graph layout problems.
Applications Such problems arise in connection with: • VLSI circuit design, • graph drawing, • embedding problems, • numerical analysis, • optimization of networks for parallel computer architectures.
History Historically, bandwidth was the the first layout problem, as a means to speed up several computations on sparse matrices during the fifties. The bandwidth problem for graphs was first posed as an open problem during a graph theoretical meeting in 1967 by Harary. For more detailed survey of graph layout problems see. The Minimal Cutwidth Linear Arrangement problem (MINCUT) was first used in the seventies as a theoretical model for the number of channels in an optimal layout of a circuit [Adolphson and Hu 1973]
Known Results All above problems are NP-hard in general, MINCUT remains NP-hard even when restricted, for example, to • polynomially (edge-) weighted trees • planar graphs with maximum degree 3. MINCUT remains NP-hard even when restricted, for example, to • trees, with maximum degree 3