1 / 59

Molecular Charmonium . A new Spectroscopy ?

II Russian-Spanish Congress  Particle and Nuclear Physics at all Scales and Cosmology. Molecular Charmonium . A new Spectroscopy ?. F. Fernandez D.R. Entem , P.G. Ortega Nuclear Physics Group and IUFFyM University of Salamanca.

dessa
Download Presentation

Molecular Charmonium . A new Spectroscopy ?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. II Russian-Spanish Congress Particle and Nuclear Physics at all Scales and Cosmology Molecular Charmonium. A new Spectroscopy? F. FernandezD.R. Entem, P.G. Ortega Nuclear PhysicsGroup and IUFFyM University of Salamanca

  2. II Russian-Spanish Congress Particle and Nuclear Physics at all Scales and Cosmology Thegroup of theUniverstity of Salamanca Heavy hadronspectroscopy Fernandez, Entem, Segovia, Ortega B WeakDecays Feanandez, Entem, Hernandez, Segovia Effective-fieldtheories Entem, Fernandez Neutrino nucleusscattering (Hernandez) Tetraquarks, hypernucleiValcarce, Fernandez- Carames

  3. Outline • Motivation • Experimental scenario • Theconstituent quark model • Thecoupledchannelsformalism • Themeson-meson sector • Thebaryonmeson sector • Summary

  4. Charmonium before B-factories

  5. Charmonium before B-factories 1980 – 2002 : no new charmonium states

  6. B-factories Data taking : 2000 – 2010 e+e– → (4S) Ecms ~ 10.6 GeV @ KEK @ SLAC

  7. Charmoniumafter B-factories

  8. N.Brambilla et al. Eur. Phys.J. C71, 1534(2011) X(3872) G(3900) Y(4260) Zb(10610), Zb(10650) Zc(3900), Zc(4025) Z(4430)

  9. Someexamples

  10. X(3872) • Quantum numbers compatibles withJPC=1++ and JPC=2-+ (ruledoutbytherecentLHCb data ) • Width:Γ< 2,3 MeV • Mass: → below D0D*0massthreshold

  11. X(3872) gamma decay

  12. The XYZ near 3940 MeV JPC=? JPC=2++ JPC=1++ Babar M=3914±4.1

  13. X(3915) BW + background e+ e+ γγX(3915)  ωJ/ψ N = 55 ±14+2–14 events γ J/ X 7.7 σ γ ω fit with no BW term e– e– J = 0, 2 only M = 3914 ±3± 2 MeV/c2 Γ = 23± 10+2–8 MeV M(ωJ/ψ) • 2σ difference with Z(3930) mass • good agreement with BaBar’sY(3940) mass seen in ωJ/ψ for JP = 0+× B(X(3915)ωJ/ψ) = (69 ± 16+7–18) eV ωJ/ψpartial width ~ 1 MeVQuite large for conventional charmonium

  14. c  e+ e+ e– s=E2cm-2EEcm 1– – c G(3900) JPC=1- - - D D Γ

  15. _ Zb(10610) and Zb(10650) (5S) hb(1P)+- (5S) hb(2P)+- no non-res. contribution Two peaks are observed in all modes! phsp Belle: PRL108, 232001 (2012) phsp M[ hb(1P) π] M[ hb(2P) π] (5S) (2S)+- (5S) (1S)+- (5S) (3S)+- note different scales

  16. Zb(10610) and Zb(10650) (11020) 11.00 (10860) + Zb – 260 10.75 (4S) 2M(B) 2 10.50 + (3S) Mass, GeV/c2 hb(2P) 430 10.25 1 Zb(10610) and Zb(10650) should be multiquark states (2S) b(2S) 10.00 hb(1P) 290 6 9.75 partial (keV) (1S) 9.50 b(1S) JPC = 0-+1--1-+

  17. Zb(10610) and Zb(10650) Zb(10610) BB*π B*B*π Zb(10650) 8 6.8 Zb(10610) + Zb(10650) Zb(10650) alone PhSp Zb(10610)+ PhSp PhSp Zb(10650)+ PhSp Zb(10610) + Zb(10650) + PhSp B*B*π signal is well fit to just Zb(10650) signal alone BB*π data fits (almost) equally well to a sum of Zb(10610) and Zb(10650) or to a sum of Zb(10610) and non-resonant.

  18. Zb(10610) and Zb(10650) w/o Zb0 with Zb0 with Zb0 w/o Zb0 B(*)B* channels dominate Zb decays ! arXiv:1308.2646

  19. Zc(3900) hep-ex/1304.3036 CLEO-c BESIII, PRL110,252001(2013) Chargedobject. Cannotbeconventionalcharmonium Belle, PRL110,252002(2013)

  20. ΛC(2940)+

  21. X(3250) PRD 86 091102 (2012) TakenfromGruenbergerProcRencontres de Moriond QCD 2012)

  22. Non conventionalcharmonium Picture fromPiiloneCharm 2012

  23. Molecular hypothesis

  24. TheConstituent Quark Model

  25. Theconstituent quark model

  26. N-N interaction F. Fernández, A. Valcarce, U. Straub, A. Faessler. J. Phys. G19, 2013 (1993) A. Valcarce, A. Faessler, F. Fernández. PhysicsLetters B345, 367 (1995) D.R. Entem, F. Fernández, A. Valcarce. Phys. Rev. C62 034002 (2000) B. Juliá-Diaz, J. Haidenbauer, A. Valcarce, and F. Fernández. PhysicalReview C 65, 034001, (2002) Baryonspectrum H. Garcilazo, A. Valcarce, F. Fernández. Phys.Rev. C 64, 058201, (2001) H. Garcilazo, A. Valcarce, F. Fernández. Phys.Rev. C 63, 035207 (2001) Mesonspectrum. J. Vijande, F. Fernández, A. Valcarce. J. Phys. G31, (2005) J. Segovia, A. M. Yasser, D. R. Entem, F. Fernandez Phys. Rev D. 78 114033 (2008) .Reports A. Valcarce, H. Garcilazo, F. Fernandez, P.Gonzalez Rep. Prog. Phys. 68 965 (2005) J. Segovia, D. R. Entem, F. Fernandez, Int. Jour. Mod. Phys. E (tobepublished) Theconstituent quark model

  27. Resultsforthe 1- - sector PRD 78 114033 (2008)

  28. Other XYZ states No candidatesfor : X(3872), X(3915)G(3900) Y(3940) Y(4260)

  29. Beyondtheconstituent quark model Do weneedtogobeyondthenaiveconstituentquark modeltodescribe charmoniumspectroscopy? • One possibility: Molecular state: • loosely bound state of a pair of mesons. • The dominant binding mechanism • should be pion exchange Two quark states can mixwithtwomesonwiththesame quantum numbers

  30. Coupling: PairCreationModel

  31. Coupledchannels:

  32. Coupledchannels:

  33. Coupledchannels:

  34. HiddenCharmMeson Sector

  35. Results: JPC=1++ sector

  36. Results: JPC=1++ sector J. Phys. G 40 085107 (2013)

  37. Results: JPC=1++ sector Theory J. Phys. G 40 085107 (2013)

  38. Results: JPC=0++ sector J. Phys. G 40 085107 (2013)

  39. Results: JPC=1-- sector

  40. Results

  41. B(*) B(*)Molecules

  42. CharmedBaryon Sector

  43. TheBaryonMesonsystem

  44. TheBaryonMesonsystem

  45. D(*) N and D(*)ΔStates

  46. D(*)N and D(*)ΔDecaysWidths

  47. Someselectedstates

  48. Someselectedstates Λc(2940)+ → D*N (I) JP = (0) 3/2- X(3250) → D*Δ(I) JP = (1) 5/2- or (I) JP = (2) 3/2-

  49. Λbpartner of Λc(2940)+ Λb(2940)+

  50. Summary • Wehavestudytheinfluence of molecular structures in heavy meson and baryonphenomenology • Wehaveused a constituent quark modeltostudyboththemeson and the molecular sectors • Themodel describe the X(3872) and other XYZ states as D D* resonancescoupledtotwo quark states • Wehave extended ourcalculationtothebaryon- meson sector • Withoutchangetheparameterswefound a ND* boundstateswith JP=3/2-which can beidentifywiththeΛc(2940)+state • TherecentlyreportedXc(3250) can alsobeexplained as a D*Δmolecule • As final conclusion molecular structuresmayplayanimportant role in thedescription of themeson and baryonespectra

More Related