1 / 8

Section 3-8: Relative Velocity

Section 3-8: Relative Velocity. Section 3-8: Relative Velocity. A useful example of vector addition ! Example: 2 trains approaching each other (along a line) at 95 km/h each, with respect to the Earth.

devika
Download Presentation

Section 3-8: Relative Velocity

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Section 3-8: Relative Velocity

  2. Section 3-8: Relative Velocity • A useful example of vector addition! • Example: 2 trains approaching each other (along a line) at 95 km/h each, with respect to the Earth. • Observers on either train see the other coming at 95 + 95 = 190 km/h. Observer on ground sees  95 km/h.  Velocity depends on reference frame!!

  3. Velocities not along the same line • Need to use full vector addition. • A common error is adding or subtracting wrong velocities • A method to help avoid this is: Proper subscript labeling of velocities • CONVENTION: • Velocities with 2 subscripts. First = object, O, Second = reference frame, R. vOR

  4. Conceptual Example 3-10: Boat Crossing A River • vBS = vBW + vWS • Outer subscripts on both sides are the same! • Inner subscripts are the same!

  5. Can extend this to more than 2 v’s • Suppose, to the previous example, we add a fisherman walking on boat with velocity vFB = velocity of the Fisherman with respect to the Boat: vFS = vFB + vBW + vWS • Outer subscripts on both sides are the same! • Inner subscripts are the same! • Finally: Relative velocities obey: vAB = -vBA

  6. Example 3-11

  7. Example 3-12

  8. Example: Plane with a cross wind vPA = 200 km/h , N vAG = 100 km/h , from NE (to SW) vPG = vPA + vAG Use the rules of analytic addition: Compute components of vPA & vAG Add these to get components of vPG. Compute the length & angle of vPG

More Related