1 / 26

The E166 Experiment K. Peter Schüler

The E166 Experiment: Undulator-Based Production of Polarized Positrons. K. Peter Schüler (DESY) - on behalf of the E166 Collaboration. e+ source options for the ILC undulator source scheme for ILC E166 – proof-of-principle demonstration of the undulator method undulator basics

devin
Download Presentation

The E166 Experiment K. Peter Schüler

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The E166 Experiment: Undulator-Based Production of Polarized Positrons K. Peter Schüler (DESY) - on behalf of the E166 Collaboration • e+ source options for the ILC • undulator source scheme for ILC • E166 – proof-of-principle demonstration • of the undulator method • undulator basics • transmission polarimetry • results & conclusions PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler

  2. e+ source options for the ILC existing/proposed positron sources: ← ILC large amount of charge req‘d ! 3 Concepts: • ‚conventional‘ • laser Compton based (see M. Kuriki‘s talk) • undulator-based (this talk) PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler 2

  3. conventional positron source (as used with SLC at SLAC) thick W-Re target: strong multiple scattering, less efficient e+ capture PRO: established technology (although not at req‘d level) CON: pushing technical limits of target materials; req‘s multiple targets and beamlines; very high activation levels no polarization option PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler 3

  4. undulator source scheme for ILC • PRO: • photoprod. in thin target 0.4 X0 Ti-alloy •  lower e+ beam emittance • less energy deposition in target (1/5) • and AMD (1/10) • less neutron induced activation (1/16) • polarized positrons • CON: • need high-energy electron drive beam • (coupled e+/e- operation) • long undulator (150-300 m) req‘d positron beam profile PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler 4

  5. undulator source scheme for ILC auxiliary keep-alive source PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler 5

  6. E166 – proof of principle demonstration of the undulator method PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler 6

  7. PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler

  8. undulator basics E166 ILC (RDR) electron beam energy (GeV) 46.6 150 field (T) 0.71 0.86 period (mm) 2.54 11.5 K value 0.17 0.92 photon energy w0max (MeV) 7.9 10.0 beam aperture (mm) 0.89 5.85 active length (m) 1 147 M (no. of periods) 394 12800 PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler 8

  9. undulator basics E166 Photon Spectrum E166 Photon Polarization first harmonic (dominating) expressions: Spectrum: Angular Distribution: Polarization: w0max = 7.9 MeV E166 Photon Yield: = no. of photons per high-energy beam electron PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler 9

  10. The E166 Experiment 2004/2005  setup and checkout Oct. 2005  4 weeks of data taking PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler 10

  11. E166 experimental setup < 8 MeV 46.6 GeV 4 – 8 MeV DM: electron beam dump magnets T1:g e+ prod. target (0.2 X0 W) T2: e+ g reconv. target (0.5 X0 W) PosSi: e+ flux monitor (Silicon) CsI: Cesium Iodide calorimeter SL: solenoid lens J: movable jaws C1 – C4: photon collimation AG1, AG2: aerogel detectors AG1Si, AG2Si: silicon detectors GCAL: Si/W-calorimeter PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler 11

  12. E166 photo gallery PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler 12

  13. transmission polarimetry • Compton Transmission Polarimetry for Low-Energy Photons • relies on spin dependence of Compton effect in magnetized iron: • Positron Polarimetry: (a) transfer e+ polarization to photon • via brems/annihilation process • (b) then infer e+ polarization from • measured photon pol. as in method 1. PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler 13

  14. analyzer magnets: overview electron polarization of the iron: M = (B–B0)/m0 = magnetization n = electron density μB = Bohr magneton g‘ = magneto-mechanical factor active volume Photon Analyzer: 50 mm dia. x 150 mm long Positron Analyzer: 50 mm dia. x 75 mm long Pe≈ 0.07 ΔPe/Pe < 0.05 (aim of experiment) PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler

  15. spin and magnetization g‘ = magneto-mechanical factor: obtained from Einstein - de Haas type experiments, related to gyromagnetic ratio: γ = (g‘/2) ∙ (e/m) Note: g‘ = 2  Ms / M = 1 (pure spin magnetization) γ = e/m g‘ = 1  Ms / M = 0 (pure orbit magnetization) γ = ½ (e/m) … and its ultimate implementation (Scott 1962) g‘ = 1.919 ± 0.002 for pure iron i.e. orbital effects contribute about 4% the principle PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler

  16. analyzer magnets  Analyzer e+ Analyzer Pickup Coils CsI-Detector e+Analyzer PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler

  17. field distribution modeling(Vector Fields OPERA-2d) end Bz (T) 22.5 20 15 10 5 R = 0 mm Z (mm) center longitudinal field distribution: Bz (R,Z) field drops gradually towards the ends: Leff / L < 1 PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler

  18. field distribution in 2d(Vector Fields OPERA-2d) Z (mm) R (mm) longitudinal field distribution: Bz (R,Z) (shown for one quadrant) PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler

  19. flux measurements: measure voltage transients in pickup coils upon current reversals Positron Analyzer (-60  +60 amps) voltage transient PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler

  20. flux and field measurements: results Z = 0 (center) Note: polarimetry was always done at full saturation over the central region (±60A) PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler

  21. electron polarization of the iron DPe/Pe ~ 2% PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler

  22. photon asymmetries detector asymmetry d (%) Dd (%) AG2Si (silicon) 3.883 0.062 AG2 (aerogel) 3.307 0.123 GCAL (Si/W-calo) 3.665 0.071 AG2Si AG2 measured photon asymmetries are in reasonable agreement with simulation results (3.2-3.5%) based on the theoretical undulator polarization spectrum and detector response functions, but no detailed spectral shape analysis is possible. GCAL PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler

  23. e+ analysis: energy deposition in CsI crystals undulator on: signal + background undulator off: background • good signal/background separation • in central crystal • background comes from beam halo • hitting the undulator • undulator on/off measurements were • taken on alternating machine pulses • for effective background separation PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler 23

  24. positron asymmetries central crystal asymmetry dvs. run cycle number for e+ spectrometer setting at 140 A data samples and spectrometer settings PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler 24

  25. positron asymmetries & beam polarizations results for the central CsI crystal e+ /e- e+ /e- = analyzing power from simulations = electron polarization of the iron PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler 25

  26. conclusions • successful demonstration of the undulator method • undulator functioned as predicted • successful polarimetry of low-energy  and e+ • confirmed expected γ e+ spin-transfer mechanism • measured high positron polarization with ~ 80% max. PSTP 2007 at BNL 10-14 Sep. 2007 The E166 Experiment K. Peter Schüler

More Related