320 likes | 810 Views
ITK-233 Termodinamika Teknik Kimia I. Dicky Dermawan www.dickydermawan.net78.net dickydermawan@gmail.com. 3 sks. 6 – Production of Power from Heat & Refrigeration. The Steam Power Plant: Rankine Cycle. The processes: > 1 2 Reversible adiabatic pumping
E N D
ITK-233Termodinamika Teknik Kimia I DickyDermawan www.dickydermawan.net78.net dickydermawan@gmail.com 3 sks 6 – Production of Power from Heat & Refrigeration
The Steam Power Plant: Rankine Cycle The processes: > 1 2 Reversible adiabatic pumping > 2 3 Isobaric heating & evaporation > 3 4 Reversible adiabatic expansion red: irreversible > 4 1 Constant pressure,constant temperature ondensation
Problem 8.4 Steam enters the turbine of a power plant operating on the Rankine cycle at 3300 kPa and exhausts at 50 kPa. To show the effect of superheating on the performance of the cycle, calculate the thermal efficiency of the cycle and the quality of the exhaust steam from the turbine for turbine-inlet steam temperature of 450, 550, and 650 oC. Pump efficiency = 85% Turbine efficiency = 80% Sketch the process in a T-S and a P-H diagram
Problem 8.11 A power plant operating on heat from a geothermal source uses isobutane as the working medium in a Rankine cycle. Isobutane is heated at 3400 kPa (a pressure just a little below its critical pressure) to a temperature of 140oC, at which conditions it enters the turbine. Isentropic expansion in the turbine produces superheated vapor at 450 kPa, which is cooled and condensed to saturated liquid and pumped to the heater/boiler. If the flow rate of isobutane is 75 kg/s, what is the power output of the cycle and what are the heat transfer rates in the heater/boiler and cooler/condenser? What is the thermal efficiency if the cycle? The turbine and the pump have an efficiency of 80%. The vapor pressure of isobutane:
9 Suatusteam power plant beroperasiberdasarsiklusRankinetidak ideal. Kondisiopeasisteam power plant tersebut, adalahsebagaiberikut: boiler bekerjapadatekanankonstan 1015 psiadengantemperaturuap air yang dihasilkan 1022 oFkondenserjugabekerjasecara isobar pada 2,9 psia, sedangkanturbindanpompabekerjasecaraadiabatikdenganefisiensimasing-masingsebesar 75%. Dengankondisioperasidemikian, daya yang mampudihasilkanadalah 100 MW. Evaluasikondisi steam keluarturbin! Hitunglaju steam yang dibutuhkan (dalam kg/jam)! Hitunglaju transfer panasdi boiler dan condenser! Hitung efisiensi termal dari plant tersebut! Gambarkan siklus yang dialami oleh uap air pada plant tersebut dalam diagram T-S dan dalam diagram P-H.
Internal Combustion Engine:The Otto Cycle – The Gasoline Engine 6 - 8 The processes: > 0 1 Intake at constant pressure > 1 2 Adiabatic compression of fuel/oil mixture > 2 3 Ignition: rapid combustion at constant volume > 3 4 Adiabatic expansion of combustion products > 4 1 Constant volume air rejection
Example 4.20 Consider an air-standard Otto cycle operating on 5 kg of air with inlet conditions of 80 kPa & 37oC. A compression ratio of 10 is used and 500 kJ of heat is added during ignition. Determine Q, W, P, & T for each step of the process and the overall efficiency of the process. γ =1.4 CV=20.93 J/mol.K
Problem 4.24 An air-standard Otto cycle operates with a compression ratio of 8, inlet conditions of 60oF & 14.7 psia, and a heat addition of 1200 Btu/lb air. The fuel and air in stoichiometric proportions gives off 1200 Btu/lb of mixture on combustion. Determine the thermal efficiency of the cycle and the maximum temperature & pressure in the cycle.
10 Suatu siklus Otto udara-ideal menyerap panas sebesar 1500 J/mol dari panas hasil pembakaran bahan bakar. Tekanan dan temperatur awal kompresi adalah 1 bar dan 30 oC, dan tekanan pada akhir langkah kompresi adalah 5 bar. Asumsikan udara sebagai gas ideal dengan tetapan Laplace, = 1,4. Berdasarkan uraian proses siklus Otto di atas: a. Hitungefisiensitermalmesin Otto tersebut b. Tentukanrasiokompresi (rC) siklus Otto udara-ideal tersebut!
Internal Combustion Engine:Diesel Engine The diesel engine differs from the Otto engine primarily in that the temperature at the end of compression is sufficiently high that the combustion is initiated spontaneously. For the same compression ratio, the Otto engine has a higher efficiency. The diesel engine operates at higher compression ratio, and consequently higher efficiency. 13 - 17
Problem 4.25 An air-standard Diesel cycle operates at a compression ratio of 14, inlet conditions of 60oF & 14.7 psia, and a maximum temperature of 2000 R. Determine the thermal efficiency of the cycle.
Problem 8.13 An air-standard Diesel cycle absorbs 1500 J/mol of heat. The pressure & temperature at the beginning of the compression step are 1 bar & 20oC, and the pressure at the end of the compression step is 4 bar. Assuming air to be ideal gas for which Cp = 7/2 R and Cv = 5/2 R, what are the compression ratio and the expansion ratio of the cycle?
11 Suatu mesin diesel bekerja berdasar siklus Diesel udara-ideal menyerap panas sebesar 1500 J/mol dari panas hasil pembakaran bahan bakar. Tekanan dan temperatur awal kompresi adalah 1 bar dan 30 oC, dan tekanan pada akhir langkah kompresi adalah 5 bar. Asumsikan udara sebagai gas ideal dengan tetapan Laplace, = 1,4. a. Hitung efisiensi siklus (dalam %)! b. Tentukan rasio kompresi (rC) dan rasio ekspansi (re) siklus Diesel udara-ideal tersebut!
Brayton Cycle – The Gas Turbine The advantages of internal combustion engine & turbine are combined in the gas – turbine system.
Problem 4.26 An air-standard Brayton cycle operates at pressure ratio of 4 across the compressor with inlet air entering the compressor at 60oF & 14.7 psia. The maximum cycle temperature is 2000 R and 1200 lb/min of air flows through the cycle. Determine the work of the compressor, the work of the turbine, ant the thermal efficiency of the cycle.
Example 2.4 Consider a simple gas turbine system with air entering the compressor at 14.7 psia, 60 F and exhausting at 150 psia. The maximum cycle temperature is 2000 F at the turbine inlet. Calculate the cycle efficiency and net work per pound of air, using: Compressor internal efficiency 0.85 Turbine internal efficiency 0.88 Average constant pressure specific heat 0.25 Btu/lb.R Specific heat ratio 1.4
Refrigeration– The Reverse Heat Engine Refrigeration implies the maintenance of a low temperature below that of the surroundings. This requires continuous absorption of heat at a low temperature level. Refrigeration is best known for its use in the air conditioning of buildings and in the treatment, transportation, and preservation of foods and beverages. It is also finds large-scale industrial application, viz. in the manufacture of ice and the dehydration of gases. Application in petroleum industry include lubricating oil purification, low-temperature reactions, and separation of volatile hydrocarbons. A closely related process is gas liquefaction, which has important commercial applications.
Refrigeration– The Reverse Heat Engine The coefficient of performance:
Refrigeration– The Vapor Compression Cycle The coefficient of performance:
Refrigeration– The Vapor Compression Cycle The coefficient of performance:
Property of HFC-134a = CF3CH2F
Choice of Refrigerant The irreversibilities inherent in the vapor-compression cycle cause the COP of practical refrigerators to depend to some extent on the refrigerant. Characteristics such as toxicity, flammability, cost, corrosion properties, and vapor pressure in relation to temperature are of great importance in the choice of refrigerant. In order that air cannot leak into the refrigeration system, the vapor pressure of refrigerant at the evaporation temperature TC should be greater than atmospheric pressure. On the other hand, the vapor pressure at the condenser temperature TH = TS should not be unduly high because of the expensive high pressure equipment.
The Most Common Refrigerant CFC-11 : CCl3F CFC-12 : CCl2F2 HCFC-123 : CHCl2CF3 HFC-134a : CF3CH2F HFC-125 : CHF2CF3
Two Stage Refrigeration
Example 9.1 A refrigerated space is maintained at 10oF, and cooling water is available at 70oF. Refrigeration capacity is 120000 Btu/hr. The evaporator & condenser are of sufficient size that a 10oF minimum-temperature difference for heat transfer can be realized in each. The refrigerant is HFC-134a. • What is the value of COP for a Carnot refrigerator? • Calculate COP and the rate of circulation of refrigerant if the compressor efficiency is 80%
11 Sebuahsistemrefrijerasimenggunakanmetanasebagairefrijerandenganlajualir 1000 kg/jam. Metanaberupacairjenuhmemasuki JT valve, diekspansikansecaraisentalpisampaitekanannyamenjadi 0,8 MPa. Metanauapjenuhdikompresisecaraadiabatik-ireversibeldalamsebuahkompresorsehinggadiperolehkondisi 3,5 MPadan 240 K. Sedangkanpenguapan, desuperheatingdanpengembunanberlangsungpadatekanankonstan. Dari deskripsisistemrefrijerasidiatas: Gambarkan siklus refrijeran dalam diagram P-H metana! Hitungefisiensikompresor (dalam %)! Dayakompresi yang dibutuhkan (dalam kW)! Tentukan COP siklustersebut! Hitung kapasitas refrijerasi (dalam ton-refrijerasi)! Tentukan kualitas uap (dalam %) dan temperature (dalam oC) uap metan meninggalkan JT valve!