650 likes | 808 Views
Structure and evolution of IDPs. Peter Tompa. Institute of Enzymology Hungarian Academy of Sciences Budapest, Hungary. Why do we want to characterize/predict IDPs?. 1) Find new ones (460 in DisProt vs. tens of thousands). 2) Describe our protein.
E N D
Structure and evolution of IDPs Peter Tompa Institute of Enzymology Hungarian Academy of Sciences Budapest, Hungary
Why do we want to characterize/predict IDPs? 1) Find new ones (460 in DisProt vs. tens of thousands) 2) Describe our protein
Why do we want to describe the structure of IDPs in detail? Extend the structure-function paradigm
To characterize… In the free state Structure In the bound state
Structural levels Sequence (primary) Local (secondary) Structure Global (tertiary)
Primary structure (sequence) of IDPs Dunker et al. (2001) J. Mol. Graph. Model. 19, 26
Low-complexity regions in proteins Wootton (1994) Comp. Chem. 18, 269
Drosophila mastermind MDAGGLPVFQSASQAAAAAVAQQQQQQQQQQQQQQQQQQQHLNLQLHQQHLQQQQSLGIHLQQQQQLQLQQQQQHNAQAQQQ QQLQVQQQQQQRQQQQQQQQQHSLYNANLAAAGGIVGGLVPGGNGAGGVALQQVFGGPNGNNNSNNNNNSNNNSININNGNI SPGDGLPTKRQPILDRLRRRMENYRRRQTDCVPRYEQTFSTVCEQQNHETSALQKRFLESKNKRAAKKTEKKLPETQQQAQT QMLAGQLQSSVHVQQKILKRPADDVDNGAENYEPPQKLPNNNNNNNNNNNNNNNSSSGVGGGSENLTKFSVEIVQQLEFTTS AANSQPQQISTNVTVKALTNTSVKSEPGVGGGRGRHQQQQQHQQHQQQQHQQQQHQQHQQHQQQQQHQQQQHQQQQHQQQQQ QHHHQQQQQQGGGLGGLGNNGRGGGGPGGGGHMATGPGGVGVGMGPNMMSAQQKSALGNLANLVECKREPDHDFPDLGSLAK DGANGQFPGFPDLLGDDNSENNDTFKDLINNLHDFNPSFLDGFDEKPLLDIKTEDGIKVEPPNAQDLINSLNVKSETGLGHG FGGFGVGLGLDPQSMKMRPGVGFQNGPNGNANAGNGGPTAGGGGGGNGPGGLMSEHSLAAQTLKQMAEQHQHKSAMGGMGGF HVPPHGMQQQQPQQQQQAPQQQQQQHGQMMGGPGQGQQQQQQQQPRYNDYGGGFPNDFAMGPNPTQQQQQHLPPQFHQKAPG GGPGMNVQQNFLDIKQELFYSSPNDFDLKHLQQQQAMQQQQQQQQQQQQQQQHHAQQQQQHPNGPNMGVPMGGAGNFAKQQQ QQVPTPQQQQQQQLQQQQQQYSPFSNQNANANFLNCPPRGGPQGNQAPGNMPQQQQQQPQQQQQPPRGPQSNPNAVPGGNAA NATQQQQQQQQQQQQQQQQQQQQQQQATTTTLQMKQTQQLHISQQGGGSHGIQVSAGQHLHLSSDMKSNVSVAAQQGVFFSQ QQAAQQQQQQQQQPGNAGPNPQQQQQQPHGGNAGANGGGPNGPQQQQPNQNMNNSNVPSDGFSLSQSQSMNFTQQQQQQAAA AAAAAAAAQQQQAAAAQQQQQQVPPNMRQRQTQAQAAAAAAAAAAAQAQAAANANGGPGGNVPLMQQQQQTPGGVPVGAGSG NASVGVPVSAGGPNNGAMNQLGGPMGGMPGMQMGGPGGVPINPMQMNPNGGAPNAQMMMGGNGGGPVPAASQAKFLQQQQIM RAQAMQHQQQVQQHMAGARPPPPEYNATKAQLMQAQMMQQTVGGGGGGGVGVGVGVGGGVGGGGGAGRFPNSAAQAAAMRRM TQQPIPPSGPMMRPQHAAMYMQQHGGAGGGPRGGMGGPYGGGGVGGAGGPMGGGGGGQQQQQRPPNVQVTPDGMPMGSQQEW RHMMMTQQQQQMGFGPGGPMRQGPGGFNGGNFMPNGAPNAPGNGPNGGGGGGMMPGPNGPQMQLTPAQMQQQHMRQQQQQQH MGPGGGGGGGGGNMQMQQLLQQQQNAAAGGGGGMMATQMQMTSIHMSQTQQQQQLTMQQQQFVQSTSTTTTHQQQQQLQLQM QSQSGGPGGNGPSNNNGANQAGGVGVGVGVGVGVGVVGSSATIASASSISQTINSVVANSNDLCLEFLDNLPDGNFSTQDLI NSLDNDNFNIQDILQ
2) Secondary structure Structure in the free state (3 examples)
CREB-KID - CBP-KIX binding and NMR Radhakrishnan et al. (1998) FEBS Lett. 430, 317
FlgM: evidence for disorder in vivo Plaxco and Gross (1997) Nature, 386, 657
FlgM - sigma 28 binding and NMR Sorenson (2004) Mol. Cell 14, 127
p27 – CycA/Cdk2 binding (NMR, MD) Sivakolundu et al. (2005) JMB 353, 1118
And a fourth: polyproline II helix SH3-PPII Wikipedia
PPII PPII helix conformation is common in IDPs Dominates in : a-casein a-synuclein tau wheat gluten Raman optical activity (ROA) Syme et al. (2002) EJB 269, 148
2) Secondary structure Structure in the bound state
p27Kip1 Tcf3 IA3 Cdk2 Asp prot. FnBP fibronectin CycA b-catenin Complexes of IDPs in PDB
31.3 % 21.9 % 44.8 % 10.9 % Secondary structural elements Helix globular IDP
Comparison of free and bound states: what does it tell us ?
Local secondary structural elements in IDPs: molecular recognition 1) disorder pattern molecular recognition element MoRE, MoRF 2) consensus sequence: linear motif LM, ELM, SLiM 3) local predictable structure preformed structural element PSE
1) Disorder pattern: MoRE in tumor suppressor p53 Uversky et al. (2005) J. Mol. Recogn. 18, 343
ELMs and local disorder Fuxreiter et al (2006) Bioinformatics, 23, 950
3) Predictability of structure: preformed structural elements, PSEs p27Kip1 Tcf3 IA3 Cdk2 Asp prot. FnBP fibronectin CycA b-catenin
PSE: predictability of secondary structure IDP Partner Fuxreiter et al. (2004) JMB 338, 1015
MoRE PSE MorE, LM, PSE: devices of effective recognition
Sequential mechanism of p27 binding 45 Lacy et al (2004) NSMB 11, 358
Structural ensemble of a-synuclein (NMR paramagnetic relaxation enhancement) Dedmon et al. (2005) JACS 127, 476
SAXS distance-distribution function and topology of cellulase E Von Ossowski et al. (2005) Biophys. J. 88, 2823
Global (tertiary) structure of IUPs IUPRC U (RC) IUPPMG PMG MG Native Uversky (2002) Prot. Sci. 11, 739
p27 A lesson from denatured states of globular proteins: spatial topology in denatured state resembles native structure (David Shortle) Gillespie et al (1997) JMB 268, 170
Models Protein trinity Protein quartet ordered ordered PMG molten globule random coil MG RC (Dunker) (Uversky)
The evolution of protein disorder Generation Evolution
Disorder in complete genomes (PONDR) Dunker et al. (2000) Genome Inf. 11, 161
Disorder in complete genomes (DISOPRED) Ward et al. (2004) JMB 337, 635
IDPs: high frequency in proteomes yeast coli Tompa et al. (2006) J. Prot. Res5, 1996
Structural disorder: evolutionary success story LDR (40<) protein, % 60 E 40 A 20 B 0 Domain of life Vucetic et al. (2002) Proteins 52, 573
The evolution of protein disorder de novogeneration Generation gene duplication lateral gene transfer, LGT Evolution
The evolution of protein disorder de novogeneration Generation gene duplication lateral gene transfer, LGT Evolution Pointmutation Mutations
Rapid evolution by point mutations Brown et al. (2002) J. Mol. Evol. 55, 104
Non-synonymous vs. synonymous substitutions Synonymous (Ks) Point mutations Non-synonymous (Ka) Nonsense 0.1-0.2: „functional” Evolution (Ka/Ks): 1.0: „neutral” 1.0: „adaptive”
Rapid evolution of SRY gene SRY: sex determining region on the Y chromosome (testis determining factor)
The evolution of protein disorder de novogeneration Generation gene duplication lateral gene transfer, LGT Evolution Pointmutation Mutations Repeat expansion