100 likes | 138 Views
Learn the basics of Dempster-Shafer Theory and how to compute probabilities using belief functions. Explore examples and key concepts such as focal elements, core, doubt function, and more. Enhance your knowledge of Bayesian Belief Functions and Dempster's Rule of Combination.
E N D
www.kdd.uncc.edu College of Computing and Informatics University of North Carolina, Charlotte Fundamentals of Dempster-Shafer Theory • presented by • Zbigniew W. Ras • University of North Carolina, Charlotte, NC
Dempster-Shafer Theory based on the idea of placing a number between zero and one to indicate the degree of belief of evidence for a proposition.
Basic Probability Assignment - function m: 2^X [0,1] • such that: (1) m()=0, (2) [m(Y) : Y X] = 1 /total belief/. • m(Y) – basic probability number of Y. • Belief function over X - function Bel: 2^X [0,1] such that: • Bel(Y)= [m(Z): Z Y]. • FACT 1: Function Bel: 2^X [0,1] is a belief function iff • Bel()=0, • (2) Bel(X)= 1, • (3) Bel({A(i): i {1,2,…,n}) = • [(-1)^{|J|+1}Bel({A(i): i J}) : J {1,2,…,n}] • for every positive integer n and all subsets A(1), A(2), …, A(n) of X FACT 2: Basic probability assignment can be computed from: m(Y) = [ (-1)^{|Y – Z| Bel(Z): Z Y], where Y X.
Example: basic probability assignment m_a({x1,x2,x3,x6})=[2+2/3]/7=8/21 m_a({x3,x6,x5})=[1+2/3]/7=5/21 m_a({x3,x6,x4,x7})=[2+2/3]/7=8/21 Basic probability assignment (given) m({x1,x2,x3,x6})=8/21 m({x3,x6,x5})=5/21 m({x3,x6,x4,x7})=8/21 • 1) m_a uniquely defined • for x1,x2,x4,x5,x7. • m_a undefined for • x3,x6. defines attribute m_a m_a(x1)=m_a(x2) =a1, m_a(x5)=a2,…..
Example: basic probability assignment Basic probability assignment – m: X={x1,x2,x3,x4,x5} m(x1,x2,x3)=1/2, m(x1,x2)=1/4, m(x2,x4)=1/4 Belief function: Bel({x1,x2,x3,x5})= ½ + ¼ = ¾, ……….. Focal Element and Core Y X is called focal element iff m(Y) > 0. Core – the union of all focal elements. Doubt Function - Dou: 2^X [0,1] , Y X Dou(Y) = Bel(Y). Plausibility Function – Pl(Y) = 1 – Dou(Y) Pl(Y)=[m(Z): Z Y ]
{1,2} {1,2} {1,2} {1,2} 1/4 {2,3} 3/4 {1,3} 1/2 m({3})=1/2, m({2,3})=1/4, m({1,2})=1/4. {1,2} {1,2} {1,2} {3} 1/2 {2} 0 {1} 0 Core={1,2,3} Pl({1,2}) = m({2,3})+m({1,2}) = ½, Pl({1,3})= m({3})+m({2,3})+m({1,2}) = 1
Properties: - Bel() = Pl() = 0 - Bel(X) = Pl(X) = 1 - Bel(Y) Pl(Y) - Bel(Y) + Bel(Y) 1 - Pl(Y) + Pl(Y) 1 - if Y Z, then Bel(Y) Bel(Z) and Pl(Y) Pl(Z) • Bel: 2^X [0,1] is called a Bayesian Belief Function iff • Bel() = 0 • Bel(X) = 1 • Bel (Y Z)= Bel(Y) + Bel(Z), where Y, Z X, Y Z = • Fact: Any Bayesian belief function is a belief function.
The following conditions are equivalent: • Bel is Bayesian • All focal elements of Bel are singletons • Bel = Pl • Bel(Y) + Bel(Y) = 1 for all Y X
Dempster’s Rule of Combination Bel1, Bel2 – belief functions representing two different pieces of evidence which are independent. Domain = {x1,x2,x3} Bel1 Bel2 – their orthogonal sum /Dempster’s rule of comb./ m1, m2 – basic probability assignments linked with Bel1, Bel2. m1 m2 (m1 m2)({x1,x2})=3/32+3/16+1/16=11/32 (m1 m2)({x1,x2,x3})=1/8 (m1 m2)({x2})=3/32+3/16+3/32+1/16=7/16 (m1 m2)({x2,x4})=3/32
Questions? Thank You