1 / 87

Instrumental Analysis Course Syllabus

Instrumental Analysis Course Syllabus. Course Information Instrumental Analysis Course number CHEM 3311 and CHEM 3313. Course description.

dianae
Download Presentation

Instrumental Analysis Course Syllabus

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Instrumental Analysis Course Syllabus Course Information Instrumental Analysis Course number CHEM 3311 and CHEM 3313

  2. Course description This course is intended to provide basic skills in instrumental analysis. Students will learn properties of electromagnetic radiation and its interaction with matter, components of spectroscopic instruments and evaluation or their features, basics of molecular and atomic spectroscopic methods, details of atomic absorption (flame and graphite furnace) and emission spectroscopy (arc, spark and plasma), UV-Vis absorption spectroscopy, and Luminescence methods. The other part of the course will include an introduction to chromatographic methods of analysis including liquid chromatographic theory, high performance liquid chromatography and techniques used, gas chromatography, and may be other separation techniques depending on time .

  3. Information Instructor Name Professor Monzir Abdel-Latif Email: mlatif@iugaza.edu.ps Office location: B321 Office hours SMW 10-11 and NT 8:30-9:30 Phone Ext: 2636

  4. Course Goals This course is an introductory instrumental analysis course, but of enough rigidity to keep you working throughout the semester. The more you try and work the more you get from this course. You will see and use most of the instruments you will learn about if you register for the lab, I do recommend it. At the end of the course, you are assumed to become familiar with the principles and components of the basic instruments in the fields of spectroscopy and chromatography.

  5. Textbook Required reading Principles of Instrumental Analysis, Skoog, Holler, Nieman, Sixth Ed., 2004. Other books on Instrumental methods are also valuable. Attendance In previous years, those who did not show up regularly, in most lectures, failed the course. According to University system, failing to attend 75% of the lectures may deprive you from attending the final exam.

  6. Grades There will be one (or two) hourly exams which will sum up to 30% of the course grade. Home work assignments and/or quizzes will be given 20 points. The final exam will catch the other 50%. Hour exams will cover new materials that you were not tested in. The final exam will be comprehensive.

  7. General Properties of ElectromagneticRadiation Lecture 1

  8. The classical wave model Electromagnetic radiation is looked at as sinusoidal waves which are composed of a combination of two fields. An electric field (which we will use, in this course, to explain absorption and emission of radiation by analytes) and a magnetic field at right angle to the electric field (which will be used to explain phenomena like nuclear magnetic resonance in the course of Instrumental Analysis B, offered to Chemistry students only).

  9. The classical wave model describes electromagnetic radiation as waves that have a wavelength, frequency, velocity, and amplitude. These properties of electromagnetic radiation can explain classical characteristics of electromagnetic radiation like reflection, refraction, diffraction, interference, etc. However, the wave model can not explain the phenomena of absorption and emission of radiation.

  10. We will only deal with the electric field of the electromagnetic radiation and will thus refer to an electromagnetic wave as an electric field having the shape of a sinusoidal wave. The arrows in the figure below represent few electric vectors while the yellow solid sinusoidal wave is the magnetic field associated with the electric field of the wave.

  11. Wave Properties of Electromagnetic Radiation

  12. Wave Parameters 1. Wavelength () The wavelength of a wave is the distance between two consecutive maxima or two consecutive minima on the wave. It can also be defined as the distance between two equivalent points on two successive maxima or minima. This can be seen on the figure below:

  13. 2. Amplitude (A) The amplitude of the wave is represented by the length of the electrical vector at a maximum or minimum in the wave. In the figure above, the amplitude is the length of any of the vertical arrows perpendicular to the direction of propagation of the wave.

  14. 3. Frequency The frequency of the wave is directly proportional to the energy of the wave and is defined as the number of wavelengths passing a fixed point in space in one second. 4. Period (p) The period of the wave is the time in seconds required for one wavelength to pass a fixed point in space.

  15. 5. Velocity (v) The velocity of a wave is defined as the multiplication of the frequency times the wavelength. This means: V =  The velocity of light in vacuum is greater than its velocity in any other medium

  16. Since the frequency of the wave is a constant and is a property of the source, the decrease in velocity of electromagnetic radiation in media other than vacuum should thus be attributed to a decrease in the wavelength of radiation upon passage through that medium.

  17. 6. Wavenumber () The reciprocal of wavelength in centimeters is called the wavenumber. This is an important property especially in the study of infrared spectroscopy.  = k 

  18. Electromagnetic Spectrum The electromagnetic radiation covers a vast spectrum of frequencies and wavelengths. This includes the very energetic gamma-rays radiation with a wavelength range from 0.005 – 1.4 Ao to radiowaves in the wavelength range up to meters (exceedingly low energy). However, the region of interest to us in this course is rather a very limited range from 180-780 nm. This limited range covers both ultraviolet and visible radiation.

  19. Mathematical Description of a Wave A sine wave can be mathematically represented by the equation: Y = A sin (t + ) Where y is the electric vector at time t, A is the amplitude of the wave,  is the angular frequency, and  is the phase angle of the wave. The angular frequency is related to the frequency of radiation by the relation: = 2 This makes the wave equation become: Y = A sin (2t+ )

  20. Superposition of Waves When two or more waves traverse the same space, a resultant wave, which is the sum of all waves, results. Where the resultant wave can be written as: Y = A1 sin (21t + 1) + A2 sin (2t + ) + ........ + An sin (2nt + n)

  21. Constructive Interference The resultant wave would have a greater amplitude than any of the individual waves which, in this case, is referred to as constructive interference. The opposite could also take place where lower amplitude is obtained.

  22. The decrease in the intensity is a result of what is called a destructive interference. When the multiple waves have the same wavelength, maximum constructive interference takes place when 1 - 2 is equal to zero, 360 deg or multiple of 360 deg. Also maximum destructive interference is observed when 1 – 2 is equal to 180 deg, or 180 deg + multiples of 360 deg.

  23. The blue and yellow shaded waves interfere to give the brown shaded wave of less amplitude, a consequence of destructive interference of the two waves.

  24. The Period of a Beat When two waves of the same amplitude but different frequencies interfere, the resulting wave exhibit a periodicity and is referred to as beat (see figure below). The period of the beat can be defined as the reciprocal of the frequency difference between the two waves: Pb = 1/()

  25. Fourier Transform The resultant wave of multiple waves of different amplitudes and frequencies can be resolved back to its component waves by a mathematical process called Fourier transformation. This mathematical technique is the basis of several instrumental techniques like Fourier transform infrared, Fourier transform nuclear magnetic resonance, etc.

  26. Diffraction of Radiation Diffraction is a characteristic of electromagnetic radiation. Diffraction is a process by which a parallel beam of radiation is bent when passing through a narrow opening or a pinhole. Therefore, diffraction of radiation demonstrate its wave nature. Diffraction is not clear when the opening is large.

  27. Coherence of Radiation Two beams of radiation are said to be coherent if they satisfy the following conditions: 1. Both have the same frequency and wavelength or set of frequencies and wavelength. 2. Both have the same phase relationships with time. 3. Both are continuous.

  28. Transmission of Radiation As mentioned before, the velocity of radiation in any medium is less than that in vacuum. The velocity of radiation is therefore a function of the refractive index of the medium in which it propagates. The velocity of radiation in any medium can be related to the speed of radiation in vacuum ( c ) by the relation: ni = c/vi Where, vi is the velocity of radiation in the medium i, and ni is the refractive index of medium i.

  29. The decrease in radiation velocity upon propagation in transparent media is attributed to periodic polarization of atomic and molecular species making up the medium. By polarization we simply mean temporary induced deformation of the electronic clouds of atoms and molecules as a result of interaction with electric field of the waves.

  30. Dispersion of Radiation If we look carefully at the equation ni = c/vi and remember that the speed of radiation in vacuum is constant and independent on wavelength, and since the velocity of radiation in medium i is dependent on wavelength, therefore the refractive index of a substance should be dependent on wavelength. The variation of the refractive index with wavelength is called dispersion.

  31. Refraction of Radiation When a beam of radiation hits the interface between two transparent media that have different refractive indices, the beam suffers an abrupt change in direction or refraction. The degree of refraction is quantitatively shown by Snell's law where: n1 sin 1 = n2 sin 2

  32. Reflection of Radiation An incident beam hitting transparent surfaces (at right angles) with a different refractive index will suffer successive reflections. This means that the intensity of emerging beam will always be less than the incident beam.

More Related