1.07k likes | 1.92k Views
Data Mining with DB. 14. Introduction to Data Mining. Motivation: Why data mining? What is data mining? Data Mining: On what kind of data? Data mining functionality Are all the patterns interesting? Classification of data mining systems Major issues in data mining.
E N D
Introduction to Data Mining • Motivation: Why data mining? • What is data mining? • Data Mining: On what kind of data? • Data mining functionality • Are all the patterns interesting? • Classification of data mining systems • Major issues in data mining
Necessity Is the Mother of Invention • Data explosion problem • Automated data collection tools and mature database technology lead to tremendous amounts of data accumulated and/or to be analyzed in databases, data warehouses, and other information repositories • We are drowning in data, but starving for knowledge! • Solution: Data warehousing and data mining • Data warehousing and on-line analytical processing • Miing interesting knowledge (rules, regularities, patterns, constraints) from data in large databases
Evolution of Database Technology • 1960s: • Data collection, database creation, IMS and network DBMS • 1970s: • Relational data model, relational DBMS implementation • 1980s: • RDBMS, advanced data models (extended-relational, OO, deductive, etc.) • Application-oriented DBMS (spatial, scientific, engineering, etc.) • 1990s: • Data mining, data warehousing, multimedia databases, and Web databases • 2000s • Stream data management and mining • Data mining with a variety of applications • Web technology and global information systems
What Is Data Mining? • Data mining (knowledge discovery from data) • Extraction of interesting (non-trivial,implicit, previously unknown and potentially useful)patterns or knowledge from huge amount of data • Data mining: a misnomer? • Alternative names • Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc. • Watch out: Is everything “data mining”? • (Deductive) query processing. • Expert systems or small ML/statistical programs
Why Data Mining?—Potential Applications • Data analysis and decision support • Market analysis and management • Target marketing, customer relationship management (CRM), market basket analysis, cross selling, market segmentation • Risk analysis and management • Forecasting, customer retention, improved underwriting, quality control, competitive analysis • Fraud detection and detection of unusual patterns (outliers) • Other Applications • Text mining (news group, email, documents) and Web mining • Stream data mining • DNA and bio-data analysis
Market Analysis and Management • Where does the data come from? • Credit card transactions, loyalty cards, discount coupons, customer complaint calls, plus (public) lifestyle studies • Target marketing • Find clusters of “model” customers who share the same characteristics: interest, income level, spending habits, etc. • Determine customer purchasing patterns over time • Cross-market analysis • Associations/co-relations between product sales, & prediction based on such association • Customer profiling • What types of customers buy what products (clustering or classification) • Customer requirement analysis • identifying the best products for different customers • predict what factors will attract new customers • Provision of summary information • multidimensional summary reports • statistical summary information (data central tendency and variation)
Corporate Analysis & Risk Management • Finance planning and asset evaluation • cash flow analysis and prediction • contingent claim analysis to evaluate assets • cross-sectional and time series analysis (financial-ratio, trend analysis, etc.) • Resource planning • summarize and compare the resources and spending • Competition • monitor competitors and market directions • group customers into classes and a class-based pricing procedure • set pricing strategy in a highly competitive market
Fraud Detection & Mining Unusual Patterns • Approaches: Clustering & model construction for frauds, outlier analysis • Applications: Health care, retail, credit card service, telecomm. • Auto insurance: ring of collisions • Money laundering: suspicious monetary transactions • Medical insurance • Professional patients, ring of doctors, and ring of references • Unnecessary or correlated screening tests • Telecommunications: phone-call fraud • Phone call model: destination of the call, duration, time of day or week. Analyze patterns that deviate from an expected norm • Retail industry • Analysts estimate that 38% of retail shrink is due to dishonest employees • Anti-terrorism
Other Applications • Sports • IBM Advanced Scout analyzed NBA game statistics (shots blocked, assists, and fouls) to gain competitive advantage for New York Knicks and Miami Heat • Astronomy • JPL and the Palomar Observatory discovered 22 quasars with the help of data mining • Internet Web Surf-Aid • IBM Surf-Aid applies data mining algorithms to Web access logs for market-related pages to discover customer preference and behavior pages, analyzing effectiveness of Web marketing, improving Web site organization, etc.
Data Mining: A KDD Process Knowledge Pattern Evaluation • Data mining—core of knowledge discovery process Data Mining Task-relevant Data Selection Data Warehouse Data Cleaning Data Integration Databases
Steps of a KDD Process • Learning the application domain • relevant prior knowledge and goals of application • Creating a target data set: data selection • Data cleaning and preprocessing: (may take 60% of effort!) • Data reduction and transformation • Find useful features, dimensionality/variable reduction, invariant representation. • Choosing functions of data mining • summarization, classification, regression, association, clustering. • Choosing the mining algorithm(s) • Data mining: search for patterns of interest • Pattern evaluation and knowledge presentation • visualization, transformation, removing redundant patterns, etc. • Use of discovered knowledge
Data Mining and Business Intelligence Increasing potential to support business decisions End User Making Decisions Business Analyst Data Presentation Visualization Techniques Data Mining Data Analyst Information Discovery Data Exploration Statistical Analysis, Querying and Reporting Data Warehouses / Data Marts OLAP, MDA DBA Data Sources Paper, Files, Information Providers, Database Systems, OLTP
Architecture: Typical Data Mining System Graphical user interface Pattern evaluation Data mining engine Knowledge-base Database or data warehouse server Filtering Data cleaning & data integration Data Warehouse Databases
Data Mining: On What Kinds of Data? • Relational database • Data warehouse • Transactional database • Advanced database and information repository • Object-relational database • Spatial and temporal data • Time-series data • Stream data • Multimedia database • Heterogeneous and legacy database • Text databases & WWW
Data Mining Functionalities • Concept description: Characterization and discrimination • Generalize, summarize, and contrast data characteristics, e.g., dry vs. wet regions • Association (correlation and causality) • Diaper à Beer [0.5%, 75%] • Classification and Prediction • Construct models (functions) that describe and distinguish classes or concepts for future prediction • E.g., classify countries based on climate, or classify cars based on gas mileage • Presentation: decision-tree, classification rule, neural network • Predict some unknown or missing numerical values
Data Mining Functionalities (2) • Cluster analysis • Class label is unknown: Group data to form new classes, e.g., cluster houses to find distribution patterns • Maximizing intra-class similarity & minimizing interclass similarity • Outlier analysis • Outlier: a data object that does not comply with the general behavior of the data • Noise or exception? No! useful in fraud detection, rare events analysis • Trend and evolution analysis • Trend and deviation: regression analysis • Sequential pattern mining, periodicity analysis • Similarity-based analysis • Other pattern-directed or statistical analyses
Are All the “Discovered” Patterns Interesting? • Data mining may generate thousands of patterns: Not all of them are interesting • Suggested approach: Human-centered, query-based, focused mining • Interestingness measures • A pattern is interesting if it is easily understood by humans, validon newor test data with some degree of certainty, potentially useful, novel, or validates some hypothesis that a user seeks to confirm • Objective vs. subjective interestingness measures • Objective: based on statistics and structures of patterns, e.g., support, confidence, etc. • Subjective: based on user’s belief in the data, e.g., unexpectedness, novelty, actionability, etc.
Can We Find All and Only Interesting Patterns? • Find all the interesting patterns: Completeness • Can a data mining system find allthe interesting patterns? • Heuristic vs. exhaustive search • Association vs. classification vs. clustering • Search for only interesting patterns: An optimization problem • Can a data mining system find only the interesting patterns? • Approaches • First general all the patterns and then filter out the uninteresting ones. • Generate only the interesting patterns—mining query optimization
Data Mining: Confluence of Multiple Disciplines Database Systems Statistics Data Mining Machine Learning Visualization Algorithm Other Disciplines
Data Mining: Classification Schemes • General functionality • Descriptive data mining • Predictive data mining • Different views, different classifications • Kinds of data to be mined • Kinds of knowledge to be discovered • Kinds of techniques utilized • Kinds of applications adapted
Multi-Dimensional View of Data Mining • Data to be mined • Relational, data warehouse, transactional, stream, object-oriented/relational, active, spatial, time-series, text, multi-media, heterogeneous, legacy, WWW • Knowledge to be mined • Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, etc. • Multiple/integrated functions and mining at multiple levels • Techniques utilized • Database-oriented, data warehouse (OLAP), machine learning, statistics, visualization, etc. • Applications adapted • Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, Web mining, etc.
OLAP Mining: Integration of Data Mining and Data Warehousing • Data mining systems, DBMS, Data warehouse systems coupling • No coupling, loose-coupling, semi-tight-coupling, tight-coupling • On-line analytical mining data • integration of mining and OLAP technologies • Interactive mining multi-level knowledge • Necessity of mining knowledge and patterns at different levels of abstraction by drilling/rolling, pivoting, slicing/dicing, etc. • Integration of multiple mining functions • Characterized classification, first clustering and then association
An OLAM Architecture Mining query Mining result Layer4 User Interface User GUI API OLAM Engine OLAP Engine Layer3 OLAP/OLAM Data Cube API Layer2 MDDB MDDB Meta Data Database API Filtering&Integration Filtering Layer1 Data Repository Data cleaning Data Warehouse Databases Data integration
Major Issues in Data Mining • Mining methodology • Mining different kinds of knowledge from diverse data types, e.g., bio, stream, Web • Performance: efficiency, effectiveness, and scalability • Pattern evaluation: the interestingness problem • Incorporation of background knowledge • Handling noise and incomplete data • Parallel, distributed and incremental mining methods • Integration of the discovered knowledge with existing one: knowledge fusion • User interaction • Data mining query languages and ad-hoc mining • Expression and visualization of data mining results • Interactive mining ofknowledge at multiple levels of abstraction • Applications and social impacts • Domain-specific data mining & invisible data mining • Protection of data security, integrity, and privacy
Summary • Data mining: discovering interesting patterns from large amounts of data • A natural evolution of database technology, in great demand, with wide applications • A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation • Mining can be performed in a variety of information repositories • Data mining functionalities: characterization, discrimination, association, classification, clustering, outlier and trend analysis, etc. • Data mining systems and architectures • Major issues in data mining
Chapter 2: Data Warehousing and OLAP Technology for Data Mining • What is a data warehouse? • A multi-dimensional data model • Data warehouse architecture • Data warehouse implementation • Further development of data cube technology • From data warehousing to data mining
What is Data Warehouse? • Defined in many different ways, but not rigorously. • A decision support database that is maintained separately from the organization’s operational database • Support information processing by providing a solid platform of consolidated, historical data for analysis. • “A data warehouse is asubject-oriented, integrated, time-variant, and nonvolatilecollection of data in support of management’s decision-making process.”—W. H. Inmon • Data warehousing: • The process of constructing and using data warehouses
Data Warehouse—Subject-Oriented • Organized around major subjects, such as customer, product, sales. • Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing. • Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process.
Data Warehouse—Integrated • Constructed by integrating multiple, heterogeneous data sources • relational databases, flat files, on-line transaction records • Data cleaning and data integration techniques are applied. • Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources • E.g., Hotel price: currency, tax, breakfast covered, etc. • When data is moved to the warehouse, it is converted.
Data Warehouse—Time Variant • The time horizon for the data warehouse is significantly longer than that of operational systems. • Operational database: current value data. • Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years) • Every key structure in the data warehouse • Contains an element of time, explicitly or implicitly • But the key of operational data may or may not contain “time element”.
Data Warehouse—Non-Volatile • A physically separate store of data transformed from the operational environment. • Operational update of data does not occur in the data warehouse environment. • Does not require transaction processing, recovery, and concurrency control mechanisms • Requires only two operations in data accessing: • initial loading of data and access of data.
Data Warehouse vs. Heterogeneous DBMS • Traditional heterogeneous DB integration: • Build wrappers/mediators on top of heterogeneous databases • Query driven approach • When a query is posed to a client site, a meta-dictionary is used to translate the query into queries appropriate for individual heterogeneous sites involved, and the results are integrated into a global answer set • Complex information filtering, compete for resources • Data warehouse: update-driven, high performance • Information from heterogeneous sources is integrated in advance and stored in warehouses for direct query and analysis
Data Warehouse vs. Operational DBMS • OLTP (on-line transaction processing) • Major task of traditional relational DBMS • Day-to-day operations: purchasing, inventory, banking, manufacturing, payroll, registration, accounting, etc. • OLAP (on-line analytical processing) • Major task of data warehouse system • Data analysis and decision making • Distinct features (OLTP vs. OLAP): • User and system orientation: customer vs. market • Data contents: current, detailed vs. historical, consolidated • Database design: ER + application vs. star + subject • View: current, local vs. evolutionary, integrated • Access patterns: update vs. read-only but complex queries
Why Separate Data Warehouse? • High performance for both systems • DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery • Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation. • Different functions and different data: • missing data: Decision support requires historical data which operational DBs do not typically maintain • data consolidation: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources • data quality: different sources typically use inconsistent data representations, codes and formats which have to be reconciled
Chapter 2: Data Warehousing and OLAP Technology for Data Mining • What is a data warehouse? • A multi-dimensional data model • Data warehouse architecture • Data warehouse implementation • Further development of data cube technology • From data warehousing to data mining
From Tables and Spreadsheets to Data Cubes • A data warehouse is based on a multidimensional data model which views data in the form of a data cube • A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions • Dimension tables, such as item (item_name, brand, type), or time(day, week, month, quarter, year) • Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables • In data warehousing literature, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.
Cube: A Lattice of Cuboids all 0-D(apex) cuboid time item location supplier 1-D cuboids time,item time,location item,location location,supplier 2-D cuboids time,supplier item,supplier time,location,supplier time,item,location 3-D cuboids item,location,supplier time,item,supplier 4-D(base) cuboid time, item, location, supplier
Conceptual Modeling of Data Warehouses • Modeling data warehouses: dimensions & measures • Star schema: A fact table in the middle connected to a set of dimension tables • Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake • Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation
item time item_key item_name brand type supplier_type time_key day day_of_the_week month quarter year location branch location_key street city state_or_province country branch_key branch_name branch_type Example of Star Schema Sales Fact Table time_key item_key branch_key location_key units_sold dollars_sold avg_sales Measures
supplier item time item_key item_name brand type supplier_key supplier_key supplier_type time_key day day_of_the_week month quarter year city location branch city_key city state_or_province country location_key street city_key branch_key branch_name branch_type Example of Snowflake Schema Sales Fact Table time_key item_key branch_key location_key units_sold dollars_sold avg_sales Measures
item time item_key item_name brand type supplier_type time_key day day_of_the_week month quarter year location location_key street city province_or_state country shipper branch shipper_key shipper_name location_key shipper_type branch_key branch_name branch_type Example of Fact Constellation Shipping Fact Table time_key Sales Fact Table item_key time_key shipper_key item_key from_location branch_key to_location location_key dollars_cost units_sold units_shipped dollars_sold avg_sales Measures
A Data Mining Query Language: DMQL • Cube Definition (Fact Table) define cube <cube_name> [<dimension_list>]: <measure_list> • Dimension Definition ( Dimension Table ) define dimension <dimension_name> as (<attribute_or_subdimension_list>) • Special Case (Shared Dimension Tables) • First time as “cube definition” • define dimension <dimension_name> as <dimension_name_first_time> in cube <cube_name_first_time>
Defining a Star Schema in DMQL define cube sales_star [time, item, branch, location]: dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), units_sold = count(*) define dimension time as (time_key, day, day_of_week, month, quarter, year) define dimension item as (item_key, item_name, brand, type, supplier_type) define dimension branch as (branch_key, branch_name, branch_type) define dimension location as (location_key, street, city, province_or_state, country)
Defining a Snowflake Schema in DMQL define cube sales_snowflake [time, item, branch, location]: dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), units_sold = count(*) define dimension time as (time_key, day, day_of_week, month, quarter, year) define dimension item as (item_key, item_name, brand, type, supplier(supplier_key, supplier_type)) define dimension branch as (branch_key, branch_name, branch_type) define dimension location as (location_key, street, city(city_key, province_or_state, country))
Defining a Fact Constellation in DMQL define cube sales [time, item, branch, location]: dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), units_sold = count(*) define dimension time as (time_key, day, day_of_week, month, quarter, year) define dimension item as (item_key, item_name, brand, type, supplier_type) define dimension branch as (branch_key, branch_name, branch_type) define dimension location as (location_key, street, city, province_or_state, country) define cube shipping [time, item, shipper, from_location, to_location]: dollar_cost = sum(cost_in_dollars), unit_shipped = count(*) define dimension time as time in cube sales define dimension item as item in cube sales define dimension shipper as (shipper_key, shipper_name, location as location in cube sales, shipper_type) define dimension from_location as location in cube sales define dimension to_location as location in cube sales
Measures: Three Categories • distributive: if the result derived by applying the function to n aggregate values is the same as that derived by applying the function on all the data without partitioning. • E.g., count(), sum(), min(), max(). • algebraic:if it can be computed by an algebraic function with M arguments (where M is a bounded integer), each of which is obtained by applying a distributive aggregate function. • E.g.,avg(), min_N(), standard_deviation(). • holistic: if there is no constant bound on the storage size needed to describe a subaggregate. • E.g., median(), mode(), rank().
A Concept Hierarchy: Dimension (location) all all Europe ... North_America region Germany ... Spain Canada ... Mexico country Vancouver ... city Frankfurt ... Toronto L. Chan ... M. Wind office
Specification of hierarchies Schema hierarchy day < {month < quarter; week} < year Set_grouping hierarchy {1..10} < inexpensive View of Warehouses and Hierarchies