1 / 16

The University of Texas-Pan American

The University of Texas-Pan American. Major Migration by College at UTPA. Presented by: S.J. Sethi, Ph.D. & Sam Shi Office of Institutional Research & Effectiveness. February 6, 2008. Outline. Introduction Data and Results Methodology - SPSS & Syntax Technical Reflections

diem
Download Presentation

The University of Texas-Pan American

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The University of Texas-Pan American Major Migration by College at UTPA Presented by: S.J. Sethi, Ph.D. & Sam Shi Office of Institutional Research & Effectiveness February 6, 2008

  2. Outline • Introduction • Data and Results • Methodology - SPSS & Syntax • Technical Reflections • Use of Results • Future Plans

  3. Introduction This report tracks the six-year graduation rates of the first-time, full-time & part-time 2000 cohort by the college of their intended major and by the college from which they graduated. Purpose: To get a better understanding of degree mobility of students and their graduation rates by college

  4. Data • 2000 cohort was 2,083 students; 633 (30%) graduated in 6 years. • 82% of the students declared a major; 18% were undecided. • 6 colleges at UTPA: • College of Arts & Humanities (8%) • College of Business (16%) • College of Education (9%) • College of Health Sciences and Human Services (14%) • College of Social Behavioral Sciences (12%) • College of Science and Engineering (24%)

  5. Results

  6. Results

  7. Results Table 3 Number of times students change majors UTPA 2000 First-time Full-time & Part-time Cohort

  8. Methodology - Files Used • Files Involved • Fall 2000 Cohort (Full-time + Part-time) • CBM001 certified files (Fall 2000 – Fall 2006 including Springs) • CBM009 certified files (AY2002 – AY2006) • Student files (Fall 2000 – Fall 2006 including Springs) – including variables or calculated variables that CBM001 doesn’t have • Variables Involved • ID – to merge between different files • Demographic variables • College, Department, Major, Classification, Full-time and Part-time status, Cumulative GPA (future study) in every enrollment semester and at the time of graduation

  9. Methodology - SPSS • Merge files • Merge the cbm001 certified files with the student files for each semester by student ID. • Merge the Fall 2000 Cohort file with the already merged cbm001 and student files to get every year’s enrollment status. • Merge the Fall 2000 Cohort file with the cbm009 graduation files to get students’ graduation status.

  10. Methodology - Syntax • Calculate Major Change /* Use this script with EXTREME CAUTION. Since it changes the existing values of the current variables. Apply this syntax only to the files in this folder.*/ compute maj_change = 0. /*take care of cases that a student miss a semester and come back with the same major*/ if(tb_major_20011 > '0' & tb_major_20012 <= '0') tb_major_20012 = tb_major_20011. If(tb_major_20012 > ‘0’ &tb_major_20021 <= ‘0’) tb_major_20021 = tb_major_20012. if(tb_major_20021 > '0' & tb_major_20022 <= '0') tb_major_20022 = tb_major_20021. if(tb_major_20022 > '0' & tb_major_20031 <= '0') tb_major_20031 = tb_major_20022. if(tb_major_20031 > '0' & tb_major_20032 <= '0') tb_major_20032 = tb_major_20031. if(tb_major_20032 > '0' & tb_major_20041 <= '0') tb_major_20041 = tb_major_20032. if(tb_major_20041 > '0' & tb_major_20042 <= '0') tb_major_20042 = tb_major_20041. if(tb_major_20042 > '0' & tb_major_20051 <= '0') tb_major_20051 = tb_major_20042. if(tb_major_20051 > '0' & tb_major_20052 <= '0') tb_major_20052 = tb_major_20051. if(tb_major_20052 > '0' & tb_major_20061 <= '0') tb_major_20061 = tb_major_20052. if(tb_major_20061 > '0' & tb_major_20062 <= '0') tb_major_20062 = tb_major_20061. if(tb_major_20062 > '0' & tb_major_20071 <= '0') tb_major_20071 = tb_major_20062. if (tb_major_20012 > '0' & tb_major_20011 > '0' & tb_major_20012 ~= tb_major_20011) maj_change = maj_change + 1. if (tb_major_20021 > '0' & tb_major_20012 > '0' & tb_major_20021 ~= tb_major_20012) maj_change = maj_change + 1. if (tb_major_20022 > '0' & tb_major_20021 > '0' & tb_major_20022 ~= tb_major_20021) maj_change = maj_change + 1. if (tb_major_20031 > '0' & tb_major_20022 > '0' & tb_major_20031 ~= tb_major_20022) maj_change = maj_change + 1. if (tb_major_20032 > '0' & tb_major_20031 > '0' & tb_major_20032 ~= tb_major_20031) maj_change = maj_change + 1. if (tb_major_20041 > '0' & tb_major_20032 > '0' & tb_major_20041 ~= tb_major_20032) maj_change = maj_change + 1. if (tb_major_20042 > '0' & tb_major_20041 > '0' & tb_major_20042 ~= tb_major_20041) maj_change = maj_change + 1. if (tb_major_20051 > '0' & tb_major_20042 > '0' & tb_major_20051 ~= tb_major_20042) maj_change = maj_change + 1. if (tb_major_20052 > '0' & tb_major_20051 > '0' & tb_major_20052 ~= tb_major_20051) maj_change = maj_change + 1. if (tb_major_20061 > '0' & tb_major_20052 > '0' & tb_major_20061 ~= tb_major_20052) maj_change = maj_change + 1. if (tb_major_20062 > '0' & tb_major_20061 > '0' & tb_major_20062 ~= tb_major_20061) maj_change = maj_change + 1. if (tb_major_20071 > '0' & tb_major_20062 > '0' & tb_major_20071 ~= tb_major_20062) maj_change = maj_change + 1. execute.

  11. Methodology - Syntax • Syntax for Tables 1 and 2 USE ALL. COMPUTE filter_$=(tb_major ~= "UNDE"). VARIABLE LABEL filter_$ 'tb_major ~= "UNDE" (FILTER)'. VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. FORMAT filter_$ (f1.0). FILTER BY filter_$. EXECUTE . CROSSTABS /TABLES=tb_coll BY tb_coll_graduation /FORMAT= AVALUE TABLES /CELLS= COUNT /COUNT ROUND CELL .

  12. FREQUENCIES VARIABLES=maj_change /ORDER= ANALYSIS . USE ALL. COMPUTE filter_$=(year_graduation > '0'). VARIABLE LABEL filter_$ "year_graduation > '0' (FILTER)". VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. FORMAT filter_$ (f1.0). FILTER BY filter_$. EXECUTE . FREQUENCIES VARIABLES=maj_change /ORDER= ANALYSIS . USE ALL. COMPUTE filter_$=(year_graduation <= '0'). VARIABLE LABEL filter_$ "year_graduation <= '0' (FILTER)". VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. FORMAT filter_$ (f1.0). FILTER BY filter_$. EXECUTE . FREQUENCIES VARIABLES=maj_change /ORDER= ANALYSIS . Methodology - Syntax • Syntax forTable 3

  13. Technical Reflections • The importance of standardized variables • Automate and speed up the merging process • How to technically determine if a student’s major is changed or not especially when the student missed a semester?

  14. Use of Results • Understanding Student Behavior • Academic Student Advising • Evaluation of Academic Programs • Assessment at time of Entry

  15. Future Plans • Add more variables • How age and ethnicity affect major migration? • How GPA is affected after major migration? • The results as raw data for future study • Major migration pattern changes across years

  16. Questions Contact Information: S.J Sethi: sjsethi@utpa.edu Sam Shi: xshi@utpa.edu Office of Institutional Research & Effectiveness: 381-2383

More Related