1 / 31

Advantages and Disadvantages of Sparse Aperture Arrays

Advantages and Disadvantages of Sparse Aperture Arrays. Fermilab: October 2009. Motivation and Contents. Sascha Schediwy: sws@astro.ox.ac.uk. http://2-pad.physics.ox.ac.uk. Introduce some of the concepts of mid-frequency, sparse aperture arrays

dieter
Download Presentation

Advantages and Disadvantages of Sparse Aperture Arrays

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Advantages and Disadvantagesof Sparse Aperture Arrays Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  2. Motivation and Contents Sascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk • Introduce some of the concepts ofmid-frequency, sparse aperture arrays • Show that 2-PAD is the perfect test-bed for experimentally investigating these concepts • Aperture Array Review • Sparse Aperture Array Concepts • Effective Area • High-Gain Antenna Strategy • Instantaneous Field of View • Sky Coverage • Dynamic Range • Computational Complexity • 2-PAD Sparse Configuration Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  3. Aperture Arrays Sascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  4. Aperture Arrays +2 +1 0 -1 -2 -2 0 -1 0 0 0 +1 0 0 +2 Sascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk beamformer Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  5. Sparse Aperture Arrays • Dense: d ≤ λ/√2, Sparse: d > λ/√2 d Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  6. Effective Area fc= 300MHz fc dense up to fc = 700MHz fc dense up to fc = 1000MHz Sascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk • Dense: Aeff = λc2/2, Sparse: Aeff = λ2/2 • Critical frequency fc Effective Area per Element sparse limit [SKA Memo 100] Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  7. High-Gain Antenna Strategy Sascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk • “The total cost of aperture array is strongly correlated with number of receiver chains” • If each antenna element has more forward gain, you can use less antennas while still maintaining comparable effective area, but make drastic cost savings due to the reduction in receiver chains S = Aeff /TsysSSFoM = (Aeff /Tsys)2 ∙ FoV • Therefore maintain target SKA sensitivity and survey speed while decreasing cost [SKA Memo 100] Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  8. Instantaneous Field of View • 60m Dish + Phased Array Feed • 120deg+10,000deg2+ • 18deg250deg2 • Fully Digital Dense A. Array • 120deg10,000deg2 • 18deg250deg2 • Hybrid Dense A. Array • 120deg10,000deg2 • 28deg 625deg2 • 18deg250deg2 • Sparse High Gain A. Array • 36deg1,000deg2 • 18deg250deg2 Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  9. Overall Sky Coverage Sascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk • Earth rotation gives full coverage in RA • Trick: 3-way 36° switching mechanism to get a 108° of declination • Karoo SKA site (SA) 30.5°S • Murchison SKA site (WA) 26.5°S Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  10. Instantaneous Sky Coverage     Sascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk • Which key science projects require pointing in opposite parts of the sky? • 1 – The Dark Ages • 2 – G. Evolution, Cosmology & Dark Energy • 3 – Cosmic Magnetism • 4 – GR using Pulsars & Black Holes • Search • 4a – Gravitational Waves • 4b – BH Spin • 4c – Theories of Gravity    • 5 – Cradle of Life • 5a – Proto-planetary Disks • 5b – Prebiotic Molecules • 5c – SETI  • 6 – Exploration of the Unknown Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  11. Dynamic Range • Station beam pattern BeamPower Station Beam Pattern • Antenna separation: random (f > 1) dense (f < 1) nominal (f = 1) sparse (f > 1) Antenna Element Separation [SKA Memo 87] Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  12. Computational Complexity • www.oerc.ox.ac.uk/research/oskar • For a constant processed FoV, the digital processing complexity increases as the square of the sparseness factor [SKA Memo 87] Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  13. OSKAR Simulator Sascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  14. 2-PAD Aperture Array Sascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk • Dual-Polarisation All Digital Aperture Array • Dual Polarisation plug and play antennas • 4x4 antenna array • Various interchangeable antennas • 300-1000MHz RF range • Digital backend processing • Multi-FPGA boards, Multi-ASIC boards • 200MHz processed bandwidth • Multiple independent beams • No. of Beam vs. Bandwidth trade-off • Demonstrate upgrade path to the AAVP Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  15. 2-PAD Aperture Array Sascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  16. 2-PAD High Gain Antenna Sascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk • Log-periodic dipole array (LPDA) antenna • Frequency range = 300-1000+ MHz Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  17. 2-PAD High Gain Antenna Sascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk • Beam-width = 34.5° (Field of View = 928deg2) • Gain = 13.2dBi (20.9x isotropic) Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  18. ROACH Correlator Sascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  19. Jodrell Bank RFI Sascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Emley Moor (870kW) Winterhill (500kW) Moel-y-Parc (100kW) Sutton Coldfield (1000kW) The Wrekin (100kW) Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  20. Jodrell Bank RFI Sascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  21. Future Deployment Sascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Sascha Schediwy: sws@astro.ox.ac.uk Fermilab: October 2009

  22. Dual Polarisation All Digital Aperture Array

  23. Antenna (ANT) & Balun (BAL) ANT BAL LNA SRC FIL CXA GCM CAT SPL SCM MID TLB CXB CXC Sascha Schediwy – Danny Price 2-pad.physics.ox.ac.uk ORA BECA FlowPAD LPDA Sascha Schediwy: sws@astro.ox.ac.uk

  24. Low Noise Amplifiers (LNA) ANT BAL LNA SRC FIL CXA GCM CAT SPL SCM MID TLB CXB CXC Sascha Schediwy – Danny Price 2-pad.physics.ox.ac.uk Sascha Schediwy: sws@astro.ox.ac.uk

  25. Filter Module (FIL) Sascha Schediwy – Danny Price 2-pad.physics.ox.ac.uk ANT BAL LNA SRC FIL CXA GCM CAT SPL SCM MID TLB CXB CXC Sascha Schediwy: sws@astro.ox.ac.uk

  26. Gain Chain Module (GCM) ANT BAL LNA SRC FIL CXA GCM CAT SPL SCM MID TLB CXB CXC Sascha Schediwy – Danny Price 2-pad.physics.ox.ac.uk Sascha Schediwy: sws@astro.ox.ac.uk

  27. Category-7 Cable (CAT) ANT BAL LNA SRC FIL CXA GCM CAT SPL SCM MID TLB CXB CXC Sascha Schediwy – sws@astro.ox.ac.uk 2-pad.physics.ox.ac.uk Sascha Schediwy: sws@astro.ox.ac.uk

  28. Splitter Balun (SPL) ANT BAL LNA SRC FIL CXA GCM CAT SPL SCM MID TLB CXB CXC Sascha Schediwy – Danny Price 2-pad.physics.ox.ac.uk Sascha Schediwy: sws@astro.ox.ac.uk

  29. Signal Conditioning Module ANT BAL LNA SRC FIL CXA GCM CAT SPL SCM MID TLB CXB CXC Sascha Schediwy – Danny Price 2-pad.physics.ox.ac.uk Sascha Schediwy: sws@astro.ox.ac.uk

  30. Translator Board (TLB) ANT BAL LNA SRC FIL CXA GCM CAT SPL SCM MID TLB CXB CXC Sascha Schediwy – Danny Price 2-pad.physics.ox.ac.uk Sascha Schediwy: sws@astro.ox.ac.uk

  31. Coaxial Cables ANT BAL LNA SRC FIL CXA GCM CAT SPL SCM MID TLB CXB CXC Sascha Schediwy – Danny Price 2-pad.physics.ox.ac.uk CXA SRC CXB CXC Sascha Schediwy: sws@astro.ox.ac.uk

More Related