210 likes | 304 Views
Response of Ocean Ecosystems to Climate Warming. Primary Production = f (biomass, light , physiology). 3 Models: B&F (1997) Carr (2002) Marra (2003). P b max. Temperature. constant P b opt. measured P b opt. Modeled IPP (mgC m -2 h -1 ). r 2 = 0.38. r 2 = 0.86.
E N D
Response of Ocean Ecosystems to Climate Warming Primary Production = f (biomass, light, physiology) 3 Models: B&F (1997) Carr (2002) Marra (2003) Pbmax Temperature
constant Pbopt measured Pbopt Modeled IPP (mgC m-2 h-1) r2 = 0.38 r2 = 0.86 Measured Integral Primary Production (mgC m-2 h-1) Product Yields
Ocean? Temperature?? Terrestrial Systems: The CASA model
net carbon fixing capacity light harvesting capacity Pbmax = Temperature Enzyme Activity & Concentration No direct effect on Pbmax Growth Rate Equal changes in carbon fixation & light harvesting No direct effect on Pbmax?
Relative Chlorophyll Concentration Growth Irradiance (mol quanta / m2 / s) Ek-dependent variability Nutrient ‘Charged’ Nutrient ‘Depleted’ < MLD Chlorophyll ( ) Calvin Cycle Capacity ( ) & Pbmax ( ) : > MLD Growth Irradiance (umol quanta m-2 s-1)
Photoacclimation Relative Subsurface Light 30 Ein 300 Ein Relative Chlorophyll equal concentration Optical Mixing Depth Photoacclimation – average or median? Average Mixed Layer Light Median Mixed Layer Light
0 0 -50 -50 -100 -100 -150 -150 -200 -200 -50 -40 -30 -20 -10 0 10 20 30 40 50 -50 -40 -30 -20 -10 0 10 20 30 40 50 Atlantic Meridional Transect Measured & Modeled Mixed Layer Pbmax Chlorophyll-a Concentration (mg/m3) .01 .02 .05 .1 .2 .5 1 5 10 50 Latitude AMT-3 AMT-2 Nutricline & Thermocline Depth (m) North South North South Latitude Latitude
BATS 6-year Time Series Measured & Modeled Pbmax Progressive Days
Model light-saturated photosynthesis Measured light-saturated photosynthesis -- requires MLD --
Ek-independent variability Chlorophyll-specific photosynthesis Light Field Data
1 2 1 2 O2 O2 H20 H20 Fdx Cyt b6 f PTOX c553 2 H 2 H H 2 H aa3-type Cyt. Oxid. NAD+ GAP RuBP Ndh ATPase PQ PSII PSI e e e e PQH2 e e e e e e e e e e 1 2 1 2 NADH NADH NADH NADH O2 ATP Stroma ADP + Pi ATP Cell Metabolism NADPH H20 H202 O2 + H20 A Lumen Chloroplast PGA PGA BPGA BPGA NADPH NADP+ GAP/DHAP GAP/DHAP OAA OAA NO3- CO2 Malate Malate OAA Malate NO2- Rubisco Calvin- Bensen Cycle NH4+ OAA Malate GS Storage gln glu NAD+ GOGAT citrate GAP Citric Acid Cycle OAA NAD+ Amino Acid Biosynthesis PEP E T C ADP + Pi GAP Cytosol B H20 Mitochondria
Photosystem II O2 Sum = Remote Sensing Chlorophyll Photosystem I Nitrogen Reduction & Amino Acid Biosynthesis Fast Pathway to Mitochondria to generate ATP Carbon Fixation Calvin Cycle Medium Pathway 3-C product to Citric Acid Cycle & Mitochondria Carbon Storage Carbon Growth
In a single species, light & nutrients can cause C:Chl to vary from < 10 to > 800 Light Growth Rate (+nutrients) (+light) Chlorophyll : Carbon Growth Irradiance Relative Growth Rate Note: Chl:C ranges from < 0.001 to > 0.1
Pbmax Light versus Nutrient as dominant control Light limitation dominates Light-Nutrient interactions Temperature BOTTOM LINE: Temperature not a good model for current production & worse for future. Best approach is direct attack on light and growth rate
J. Bishop 1999 Deep Sea Research cp cp* POC 14C-based photosynthetic efficiency HOT BATS NABE
90o 90o 75o 75o 60o 60o E 45o 45o NP NA 30o 30o NA NP 15o 15o C NI F CP CA 0o 0o CA 15o 15o SI SA B SP 30o 30o D SP SA 45o 45o 60o 60o 75o 75o 90o 90o B C Satellite Chl:C Ratio ( ) Chlorophyll concentration ( ), bbp ( ) D E F Year
Light Interaction Growth rate bbp-based Chl:C = a + b exp -3 Ig
10 1 SeaWiFS chlorophyll 0.1 0.01 0.001 0.001 0.01 0.1 1 10 Inversion chlorophyll Current Limitation… Inversion bbp 0.05 0.01 0.001 0.0005 0.01 0.1 1 10
PhyLM The Physiology Lidar- Multispectral Mission Exploring complex ecosystems of our global oceans