810 likes | 903 Views
Chapter 7. Section 7.6. Exercise #7. Use the FOIL method to multiply the two binomials. Outer. Inner. First. Last. (2x 7) (7x 9). First. Outer. Inner. Last. 2x 7x + 2x 9 + 7 7x + 7 9. 14 x 2 18x 49x + 63. 14 x 2 67x + 63. Chapter 7. Section 7.6.
E N D
Chapter 7 Section 7.6 Exercise #7
Outer Inner First Last (2x 7)(7x 9)
First Outer Inner Last 2x 7x + 2x 9 + 7 7x + 7 9
Chapter 7 Section 7.6 Exercise #11
x2 + 5x + 6 = 0 6 2 3 2 + 3 = 5 1 6 1 + 6 ≠ 5 or
x2 + 5x + 6 = 0 (x + 3)(x + 2) = 0
x2 + 5x + 6 = 0 If (x + 3) (x + 2) = 0 (x + 3) = 0 or (x + 2) = 0 then
x2 + 5x + 6 = 0 (x + 3) = 0
x2 + 5x + 6 = 0 x + 3 3 = 0 3
x2 + 5x + 6 = 0 x = 3 or (x + 2) = 0
x2 + 5x + 6 = 0 x = 3 or x + 2 2 = 0 2
x2 + 5x + 6 = 0 x = 3 or x= 2
x2 + 5x + 6 = 0 The solution set is{2,3}.
check: (2)2 + 5(2) + 6
check: 4 10 + 6
check: 0
check: (3)2 + 5(3) + 6
check: 9 15 + 6
check: 0
Chapter 7 Section 7.6 Exercise #29
12 x = 6x2 12 12 x + x = 6x2 12 + x
12 x = 6x2 0 = 6x2 12 + x
12 x = 6x2 0 = 6x2 + x 12
12 x = 6x2 If (3x 4)(2x + 3) = 0 then 3x 4 = 0 or 2x + 3 = 0
12 x = 6x2 (3x 4) = 0
12 x = 6x2 3x 4 + 4 = 0 + 4
12 x = 6x2 3 3 3x = 4
12 x = 6x2 4 1 x = 3
12 x = 6x2 4 x = 3 or (2x + 3) = 0
12 x = 6x2 4 x = 3 or 2x + 3 3 = 0 3
12 x = 6x2 4 x = 3 or 2x = 3 2 2
12 x = 6x2 4 x = 3 or 1 x = 3 2
12 x = 6x2 4 x = 3 or x = 3 2
12 x = 6x2 4 3 The solution set is{ , }. 3 2
12 = 6 4 4 3 3 check:
check: 2 16 = 9 4 6 3 36 3 1 3
check: = 32 32 3 3
12 = 6 3 3 2 2 check:
check: 3 + = 6 2 24 2 3 9 2 4
check: 27 27 = 2 2
Chapter 7 Section 7.6 Exercise #37
Solve the quadratic equation by using the quadratic formula.