1 / 19

Generating Truly Optimal Code Using a Metaprogramming Library

Generating Truly Optimal Code Using a Metaprogramming Library. Don Clugston First D Programming Conference, 24 August 2007. String mixins in D – undercooked, but very tasty. char [] greet(char [] greeting) { return ` writefln(“ ` ~ greeting ~` , world!”); `; } void main() {

dolan
Download Presentation

Generating Truly Optimal Code Using a Metaprogramming Library

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Generating Truly Optimal CodeUsing a Metaprogramming Library Don Clugston First D Programming Conference, 24 August 2007

  2. String mixins in D – undercooked, but very tasty char [] greet(char [] greeting) { return `writefln(“` ~ greeting ~`, world!”);`; } void main() { mixin( greet( “Hello” ) ); } • Compiles to: • Vindicates built-in string operations void main() { writefln( “Hello, world!” ); }

  3. The Challenge • Fortran: BLAS (a standard set of highly optimised routines). The crucial functions are coded in asm. y[] += a * x[] • But BLAS is limited – nothing for simple things: • x[] = y[] - z[] • a[] = r[]*0.3 + g[]*0.5 + b[]*0.2; void DAXPY(double [] y, double [] x, double a) { for (i = 0; i < y.length; ++i) y[i] += x[i] * a; }

  4. Operating overloading • Gives ideal syntax, always works • Can’t operate on built-in types • Inefficient because: • Creates unnecessary temporaries. • Multiple loops, eg a[]=b[]+c[]+d[]  • Somehow, we need to get the expression inside the ‘for’ loop! double [] temp1= new double[], temp2 = new double[]; for(int i=0; i<b.length; ++i) temp1[i] = b[i] + c[i]; for(int i=0, i<temp1.length; ++i) temp2[i] = temp1[i] + d[i]; a = temp2;

  5. The Wizard Solution: Expression Templates (eg, Blitz++) • Overloaded operators don’t do the calculation: instead, they record the operation as a proxy type, creating a syntax tree. • Example: (a+b)/(c-d): • Need a good optimiser. • Works in D as well as C++. BUT… we are fighting the compiler! DVExpr<DVBinExprOp<DVExpr< DVBinExprOp<DVec::iterT, DVec::iterT, DApAdd>>, DVExpr<DVBinExprOp< DVec::iterT, DVec::iterT, DApSubtract>>, DApDivide>>

  6. Representing the Syntax Tree in D • In D, any expression can be represented in a single template. • Represent types and values in a tuple. Represent expression in a char []. A..Z correspond to T[0]..T[25]. eg: Note that ‘A’ appears twice in the expression (operator overloading can’t represent that). void vectorOperation(char [] expression, T…)(T values) { } vectorOperation!(“A+=(B*C)/(A+D)”)(x, y, z, u, v);

  7. Finding the vectors in a tuple • It’s a vector if you can index it. • Imperfection – can’t index tuple in CTFE. • Workaround – create array of results. • Usage: if ( isVector!(Tuple)[i]) { … } template isVector(T...) { static if (T.length == 0) const bool [] isVector = []; else static if( is( typeof(T[0][0]) ) ) const bool [] isVector = true ~ isVector!(T[1..$]); else const bool [] isVector = false ~ isVector!(T[1..$]); }

  8. Metaprogramming For Muggles char [] muggle (char [] expr, Values...)() { char [] code = "for (int i=0; i<values[0].length; ++i) {"; foreach(c; expr) if (c >= 'A' && c <= 'Z’) { // A-Z become tuple members. code ~= "values[" ~ itoa(c-'A') ~ "]"; // add [i] if it was a vector if (isVector!(Values)[c-'A']) code ~= "[i]"; } else code ~= c; // Everything else is unchanged return code ~ "; }“; } template VEC(char [] expr) { void VEC(Values...)(Values values) { mixin( muggle!(expr, Values) ); }} USAGE: double [] firstvec, secondvec, thirdvec; VEC!("A+=B*(C+A*D)")(firstvec, secondvec, thirdvec, 25.7);

  9. Trivial enhancements • Ensure all vectors are the same length. • Assert no aliasing (vectors don’t overlap). • Equalize with hand-coded asm BLAS routines. foreach(int i, bool b; isVector!(Values)[1..$]) { if (b) code ~= “assert(values[“ ~ atoi(i) ~ “].length == values[0].length);”; } static if ( expr == “A+=B*C” && is( Values[0] == double[] ) && is( Values[1] == double[] ) && is ( Values[2] : double ) ) { return “DAXPY(values[0].length, values[0].ptr, values[1].ptr, values[2]);”; }

  10. Asm code via perturbation • It’s hard to determine the optimal asm for an algorithm, much easier to modify existing code. • Begin with Agner Fogg’s optimal asm code for DAXPY. Use same loop design and register allocation strategy. • Ignore difficult cases – fallback to D code.

  11. X87 (stack-based) • Convert the infix expression into postfix. Split += into + and =. • Swap operands to avoid FMUL latency. A += B - C * D  A = (A+B) - (C*D)  C D * A B + - A = • Avoid gaps in the instruction set • Eg, fewer instructions for 80-bit reals, so load them first whenever possible.

  12. X87 code generation • Directly convert postfix to inline asm. VEC!("C+=B*(A+D)")( 2213.3, vec1, floatvec, vec2); // Postfix : BAD+*C+C= L1: fld double ptr [EAX + 8*ESI]; //B fld double ptr [EAX + 8*ESI]; //A fadd double ptr [EDX + 8*ESI]; //D+ fmulp ST(1), ST; //* fadd float ptr [ECX + 4*ESI]; //C+ fxch ST(1), ST; fstp float ptr [ECX + 4*ESI - 4]; // C= L2: inc ESI; jnz L1;

  13. SSE/SSE2 (register-based) • Can’t do mixed-precision operations. • Unroll loop by 2 or 4, to take advantage of SIMD. • Instruction scheduling is less critical, but register allocation is more complicated than for x87.

  14. GPGPU • Use the GPU in modern video cards to perform massively parallel calculations. • Uses OpenGL or DirectX calls, instead of inline asm. • Full of hacks (pretend your data is a texture!) – but a rational API should emerge soon. • This should NOT be built into a compiler!

  15. Adding a front end • Operator overloading • Same limitations as before • Mixins eg, mixin(blade(“firstvec+=secondvec*2.38”)); • clumsy syntax BUT: • Can detect aliases • Allows better error messages • Can unroll small loops inline • Closer to proposed macro syntax

  16. Front end using mixins • Lex: first += second * 2.38  A+=B*C. • Determine types, resolve aliases, convert constants to literals. • Determine precedence and associativity • Perform constant folding • We can do most of this using mixins • Compiler help is most required for 4 • __traits could help

  17. Determining types char[] getSymbolTable(char [][] symbols) { char [] result = "["; for(int i=0; i<symbols.length; ++i) { if (i>0) result ~=","; result ~= "[typeof(" ~ symbols[i] ~ `).stringof, ` ~ symbols[i] ~ `.stringof]`; } result ~= "]"; return result; } • When mixed in, this creates an array[2] of string literals. • [0] is the type, [1] is the value

  18. Determining precedence class AST(char [] expr) { alias expr text; AST!("(" ~ text ~ “+” ~ T.text ~ ")") opAdd(T)(T x) { return null; } AST!("(" ~ text ~ “*” ~ T.text ~ ")") opMul(T)(T x) { return null; } AST!( text ~ "([" ~ T.text ~ "])“ ) opIndex(T)(T x) { return null; } } char [] getPrecedence(char [] expr) { char [] code = "typeof("; for(int i=0; i<expr.length; ++i) { if (expr[i]>='A' && expr[i]<='Z') code ~= "(cast(AST!(`" ~ expr[i] ~"`))(null))"; else code ~= expr[i]; } return code ~ ").text"; } mixin(getPrecedence(“A+B*C*D”) )  “A+((B*C)*D)”

  19. Conclusion • Implementation and syntactic issues remain • Syntax for runtime and compile-time reflection • Macros, and an extended __traits syntax should help. • How to clean up mixin(), yet retain its power? • Yet perfectly optimal code is already possible. Libraries can perform optimisations previously required a compiler back-end.

More Related