550 likes | 720 Views
Secondary Aerosol Formation from Gas and Particle Phase Reactions of Aromatic Hydrocarbons. Di Hu and Richard Kamens. Funded by the USEPA STAR program July 30, 2003 to July 29, 2006. Department of Environmental Science and Engineering UNC, Chapel Hill.
E N D
Secondary Aerosol Formation from Gas and Particle Phase Reactions of Aromatic Hydrocarbons Di Hu and Richard Kamens Funded by the USEPA STAR program July 30, 2003 to July 29, 2006 Department of Environmental Science and Engineering UNC, Chapel Hill
The objective of this project is to develop a simple “efficient” multi-phase chemical mechanism that will predict secondary organic aerosol formation from aromatic atmospheric reactions
Volatile aromatic compounds comprise a significant part of the urban hydrocarbon mixture in the atmosphere, up to 45% in urban US and European locations
Toluene, m- & p-xylenes,benzene and 1,2,4-trimethyl benzene, o-xylene and ethylbenzene make up 60-75% of this load. In the US, transportation sources contributed ~67% to the total aromatic emissions which range from 2.4 x 106 to 1.9 x 106 tons/year.
Laboratory studies show that gas phase reactions ofaromaticsform a host of oxygenates secondary organic aerosol material (SOA) • hydroxy unsaturated dicarbonyls • di and tri carboxylic acids • Nitrated hydroxy carbonyls
Historically “lumped” aromatickinetic models have focused on Ozone formation: illustrate how these fit smog chamber data; solid lines = data, dashed lines = model) look at a mechanism
CB4 fit to 4 ppmC Tolueneand 0.4 ppm NOxUNC outdoor aerosol chamber
{ TOLUENE CHEMISTRY… CB4 } OH + TOL = 0.08 XO2 + 0.36 CRES + 0.44 HO2 + 0.56TO2 TO2 + NO = 0.90*NO2 + 0.90*HO2 + 0.90*OPEN TO2 = CRES + HO2 OH + CRES = 0.4 CRO + 0.60 XO2 + 0.60 HO2 + 0.30 OPEN OPEN = C2O3 + HO2 + CO, OPEN + O3 = 0.03*RCHO + 0.62 C2O3 + 0.70 HCHO+ 0.03 XO2 + 0.69 CO + 0.08 OH + 0.76 HO2 + 0.2MGLY
O=CH CH 3 CH OH 3 + H O 2 O + HO 2 benzaldehyde NO NO o-cresol 2 +O CH 2 * 3 CH . CH 2 3 OH OH OH H . H CH toluene CH CH 3 3 3 OH + . OH NO . O 2 O O2 +O H H 2 H H O NO oxygen bridge rearrangement OH H +O . O 2 H + HO 2 H ring cleavage O + radical H CH H OH 3 H butenedial methylglyoxal O H
Pent-dione + OH 0.5 pent-rad +0.5 pent-oo pent-oo XO2 + 0.5 GLY+ 0.5 MGLY + 0.5 CO + 0.5HO2 +0.25 OHoxybutal +0.25 but-tricarb pent-rad Maleic + 1.5 XO2 + HO2 + HCHO
hexadiene-dicarb butene-dicarbonyl pentene-dicarbonyl benzaldehyde cresol maleic anhydride 43 AROMATIC reactions + Carbon 4
Chamber Post “Nucleation” Observations When high concentrations of toluene are added to background air chamber in sunlight, after about 10 minutes particles in the 7-12 nm range appear. O3 = 12 ppb NO = 5-6 ppb NO2= 1-2 ppb fine particles ~4-5 ug/m3 (70-120 nm) C2-C10 < 50 pppC
CH 3 O2 OH NO . 2 +O CH H * 2 3 CH 3 H H OH OH NO H . H toluene + CH 3 O O oxygen bridge There is a need to represent this initial “post nucleation” process… Klotz et al, show experimental evidence that hexadienedials produce particles when they photolyze.
Gas phase reactions CH3-C-C=O CH3-C-C=O Gas and particle phases can be linked via G/P partitioning Methyl glyoxal 1Cgas + surf 1Cpart particle
CH3-C-C=O O kon koff particle kon koff • [ igas] + [part] [ipart] Kp = kon/koff
Optimized GAS-Particle Phase kinetics [BENZA gas]+ [C5KETALDp] [BENZA p]+ [C5KETALDp] kon [BENZA gas]+ [BENZAp] [BENZA p]+ [BENZAp] kon [BENZA gas]+ [seed] [BENZA p]+ [seed] kon… … … [BENZAp] [BENZA gas] koff TSP = n[BENZAp] +n[C4OHALDp] + n[C5OHALDp] + n[Poly3] + n[Poly1] + n[Poly2] + n[Poly4] + n[Poly5] + n[C4KETALDP] + n[C5KETALDP] + n[OPENP] + n[seed] + n[seed2] + n[RgNO3P] + n[RALDNO3p] + n[RALDACIDp] + n[GLYp] + n[MGLYP] + n[Poly6] + n[Poly7] + n[Poly8] + n[BZONO3P]; [BENZAgas]+ [TSP] [BENZALD p]+ [TSP] kon
Glyoxal in the gas and particle phase (PFBHA) H CH H H 3 methylglyoxal glyoxal Vapor pressures ~ 10 torr
PFBHAO-(2,3,4,5,6-pentafluorobenzyl) -hydroxylamine for carbonyl groups Carbonyl group Carbonyl
Particle Phase Reactions GLY ----> GLYP @ 500*kon_glyT
R[TOLP_11a] = GLYP ----> Poly1 @ 500*kpart_T; R[TOLP_11b] = Poly1 ----> GLYP @ kpart_off; GlyP Poly1 k1 Poly1 ----> GlyP k-1 Gly4OHP + GlyAcidP ----> pre-Poly1 Pre-Poly1 + C4OHALD ----> Poly1
NO O3 NO2 Simulation of 4 ppmC Toluene + 0.4 ppm NOx experiment in sunlight
Fit to Toluene data model data
TSP and SMPS particle mass SMPS Filter data
Model simulation of TSP Data model
carbonyl-PAN C4-carbonyl-acid butane-tricarbonyl OH-oxobutanal polymer1