1 / 57

An Introduction to Abstract Argumentation

An Introduction to Abstract Argumentation. Dr. Pierpaolo Dondio , DIT – School of Computing. Agenda. Introduction What is argumentation theory? Abstract Argumentation Frameworks (Dung 1995) Stable, Grounded and Preferred Semantics Instantiating Abstract Argumentation Applications

dom
Download Presentation

An Introduction to Abstract Argumentation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. An Introduction to Abstract Argumentation Dr. PierpaoloDondio, DIT – School of Computing

  2. Agenda • Introduction • What is argumentation theory? • Abstract Argumentation Frameworks (Dung 1995) • Stable, Grounded and Preferred Semantics • Instantiating Abstract Argumentation • Applications • Probabilistic and Uncertain Argumentation

  3. What is argumentation Theory • the interdisciplinary study of how conclusions can be reached through logical reasoning • Key Questions: • How arguments are built? • How humans negotiate, discuss, argue? • Who wins? i.e. how can we identify acceptable valid arguments and discard invalid? • We focus on AI developments • Computational Logic & Non-monotonic reasoning • Abstract Argumentation

  4. Nonmonotonic logic • Standard logic is monotonic: • If S |-  and S  S’ then S’ |-  • But commonsense reasoning is often nonmonotonic: • John is an adult, Adults are usually employed, so John is presumably employed • But suppose also that John is a student and students are usually not employed … • We often reason with rules that have exceptions • We apply the general rule if we have no evidence of exceptions • But must retract our conclusion if we learn evidence of an exception

  5. Source of non-monotonicity • Exceptions • Moral Rules • Legal Rules • (False) Generalizations • Limited knowledge • …

  6. Some nonmonotonic logics • Default logic (Ray Reiter) • Logic programming (Robert Kowalski) • … • Argumentation logics • Argumentation Logics, and in particular Abstract Argumentation Frameworks studied here, have the same expressive power as Default Logic

  7. Argumentations are nonmonotonic A Paul is a good at Maths Paul is not good at Maths B Paul got 90% in his final Maths test If you get high marks in a Maths test you are good at Maths Paul was never able to help me with my Maths homework Exam result is not a valid evidence Exam result is not a valid evidence What Mary said is not trustworthy D C E Exam was very easy this year Mary said Paul copied the exam Mary is a well-known layer

  8. Abstract Argumentation Frameworks A B E D C (Dung 1995) An argumentation framework is a pair where is a set of arguments, and is a binary relation on , i.e. . • For two arguments A,B, the meaning of is that A represents an attack against B.

  9. The Key Problem • I want to say something about arguments : • Which arguments are acceptable? Which are not? • When to abstain? • A argumentationsemantics sets the rules (postulates) used to answer the above questions • In the labelling approach, we label each argument • IN – Argument is accepted • OUT – Argument is rejected • UNDEC – Nothing can be said on argument status

  10. Starting Point • Given we define a labelling function as a total function over : • We also define the • Starting basic idea. We label all arguments according to these simple rules: • An argument in each labelling is either IN or OUT • An argument is ‘in’iff all arguments defeating it are ‘out’. • An argument is ‘out’iff it is defeated by an argument that is ‘in’.

  11. Example • A: Mark is good at Math, he got 90%! • B: John said Mark copied the test! • C: John is a well-known layer! • Our rule works fine. We expect • A in • B out • C in • This is called reinstatement; A is reinstated by C. A B C

  12. Example 2 • D: Sarah says that John is honest! • And now? The graph is cyclic! Our basic rule does not work anymore! • Multiple solutions: A B C D A B C D A B C D D A B C

  13. Complete Semantics • Grounded (Pollock, Dung) • Preferred (Dung) • Stable (Dung, Caminada) • Many more.. Semi-stable, CF2..

  14. Complete Semantics: Conflict-free A set S of arguments is said to be conflict-free if there are noarguments A,B inS such that A attacks B . B S A Arg (A  S & attack(A,B)) = > B S

  15. Complete Semantics - Admissibility An argument A is admissible with respect to a set Sif S can defend A with an argument B  S against all attacks C on A. We want to accept arguments for which there is an admissibility set A S C B (A Arg & attacks(C,A))

  16. Complete Semantics • It accepts all the conflict-tree and admissible arguments • In general multiplelabelings are valid • It can be proven that the following labelling rules exactly compute the complete semantics • if A is labelled in then all attackers of A are labelled out • if all attackers of A are labelled out then A is labelled in • if A is labelled out then A has a attacker that is labelled in, and • if A has a attacker that is labelled in then A is labelled out • A is labelled undeciff at least one attacker is undec and thre is no attacker labelled in

  17. Complete Semantics • Many sub-semantics have been defined over a complete labeling. Let Grounded • L is a complete labellings such as undec(L) is maximal w.r.t. to set inclusion Preferred • L is a complete labellings such as in(L) is maximalw.r.t. to set inclusion Stable • L is a complete labelling such that undec(L) = ∅

  18. Hierarchies of Semantics (Caminada)

  19. Example • Grounded: all undecided • Stable: IN={b,d} ; OUT={a,c,e} • Preferred: • IN={b,d} ; OUT={a,c,e} • IN={a} ; OUT={b} ; UNDEC={c,d,e}

  20. The example of floating assignment • Grounded: all undecided • Preferred: • IN={b} ; OUT={c,a} • IN={c} ; OUT={b,a} • Stable: same as preferred A C B

  21. The Nixon Diamonds & 3-Cycle • Grounded: undec • Preferred: • IN={a}, OUT={b} • IN={b}, OUT={a} • Stable: same as preferred • Grounded: undec • Preferred: undec • Stable: none C B A C B

  22. Credulous vs ScepticalAcceptability • After each labelling, we are left with three set of arguments In general, there are multiple labelings (one for grounded, maybe many for preferred or stable) How can I accept arguments? • Credulous acceptance. • If there is at least one labelling where argument A is labeled IN, accept it • Sceptical acceptance • An argument must have the same labels in all the labelings • Grounded acceptance implies sceptical preferred or stable acceptance

  23. Instanciating an AA • Nothing is said about argument internal arguments structure • Arguments as modus-ponens rules • How can these rule be attacked? • Rebuttals: attack • Undercutting: attack • Undermining : attack • The red light example • If an object looks red, it is red • What if the object is illuminated by red light?

  24. Arguments as logical consequences • propositional language whose atoms is a finite set and its connectives are . • The symbol means logical consequence. • for and a formula in , is an argumentiff and it does not exits so that • Given argument , we call the support of and the claim of . • Given two arguments and , we define rebuttal and undercut attacks in the following way: • rebuts if • undercuts if there is such that

  25. Some Applications • Legal Reasoning (Prakken) • Computational Trust • Dondio (2007 – 2013, Phd) • Multi-Agents Conflict Resolution • Decision Support Systems • Healtchare (Longo 2012) • … many more

  26. Trust as a form of Argumentation • if agent has high level of past performance, then trust it • if agent is similar to Carol, then trust him • if agent has low reputation, then distrust him • if task context is new to the agent, then invalidate argument PP • if past performance are high an reputation is low, then prefer past performance • if past-performance are out of date, then invalidate argument PP PP+ + - + Sim+ R- = = A2 = A1 A3

  27. Problems with Abstract Argumentation • Nothing is said about arguments. There is the danger to model impossible situations or derive useless conclusions • Too coarse! • Many times, you are left with no arguments or multiple labelings and nothing to choose about • Arguments are perceived with difference strength, importance, maybe based on their likelihood or certainty level or subjective preferences.. • How can we build a numerical argumentation?

  28. Towards Argumentation with Strengths • First attempt: Pollock • Arguments are modus ponens rules • Two premises: fact and assumption • Strength are numbers in [0,1] • Strength of a conclusion – Weakest Link: • If C attacks B, B strength is • Multiple attacks. No accrual, chose the max only • What is this strength? Ad-hoc? • Rejection of probability, is this justified? A D C B

  29. Weighted Argumentation • Abstract Argumentation with weights • Inconsistency Tolerance (Dunne 2009) • Baroni / Toni 2013 proposal (ordinal functions for attack and support), Pollock-like • Same criticism: what’s the meaning of the numbers used to quantify argument importance? • Social Argumentation • Weights (importance) attached to each arguments come form a voting systems (online forums etc..)

  30. Probabilistic Argumentation Li (2011), Hunter (2012), Dondio (2012) • Real world arguments are clearly affected by uncertainty. • Probabilistic uncertainty is well studied (probability calculus) and clear understood (maybe….) • Allow arguments to be probabilistic in nature. Source of probability: • Randomness, stochastic processes • Statistical information • Subjective Beliefs • Example: If you have fever, 80% is flu

  31. Probabilistic Argumentation • A PAF is a tuple (AF,P) where • AF = (Ar,R) is an abstract argumentation framework and • is a joint probability over arguments. If statistical independence holds, is a scalar function: 0.7 0.4 0.5

  32. How to compute a PAF? • We need to find the probability that an argument is labelled IN, OUT, UNDEC • Probabilistic arguments implies multiple scenarios () each obtained by assuming that each argument claim hold or not. • Each scenario has its own probability (computed using P) • Each scenario corresponds to a sub-graph of the argumentation framework

  33. Notation for group of sub-graphs • = 2 sub-graphs, all the sub-graphs containing and not • = 5 sub-graphs not containing or all the sub-graphs containing togheter • = 1 sub-graph,

  34. Computing PAF • We can label arguments in each sub-graph, assigning the OUT label if the argument is not present in the sub-graph (defeated by its own)! • We then group all the sub-graphs where a generic argument is labelled • We call these sets • We compute the probabilities of these sets summing up the probabilities of all the sub-graphs in each set.

  35. Brute Force Brute force approach for Given Chose argument in foreach sub-graph of assign a label to in using the chosen semantics if add to if add to if add to are computed using and they are the probabilities we were looking for

  36. 2-Layer Approach • is not • is the probability that argument a claim holds in isolation • is the probability that the argument claims holds after the argumentation process

  37. Example / Grounded Case • Not a very clever approach (w.r.t. computation) • We can skip many scenarios and reduce the problem space

  38. Notation for Grounded labelling • , , ,is the set of all the sub-graphs of • Under grounded semantic there is one unique labelling for each sub-graph called . Sets of interests: (2 sub-graphs) (5 sub-graphs) (1 subgraph)

  39. Preferred Case • There are multiple labelings for each sub-graph • An argument can be IN and OUT in the same scenario (but in different labelings) • Solution 1: give a probability for credulous acceptance (possibility) and 1 for sceptical acceptance (necessity) • Solution 2: use principle of indifference, splitting the probability of a single sub-graph among all the valid preferred labeling

  40. Preferred Sets • = set of labelings for a scenario s • Preferred credulous sets: • While the skeptical sets are:

  41. Preferred Case • (note that also in ) • (6 scenarios) • Necessity is = 0.25 • Possibility is = 0.375 • Indifferent probability = 0.3125

  42. Brute force is not efficient • w.r.t. computational time • w.r.t. the length of the expression of • 56 sub-graphs in • It can be reduced to 3 clauses only • Wasted of computational time. Some cases do not need to be comptued / recomputed • Idea: assign sets of sub-graphs at each computational step • Recursive and decision-tree-like argument (Dondio 2013)

  43. A Recursive Algorithm (grounded) • It decomposes the grounded semantics computation. It applies the rules of a complete labelling + maximise undec. • The algorithm. Visit the transpose graph from root and imposes the following two rules: • Terminal conditions • if is required to be in then • if node is required to be out then • Cycles • If a cycle is detected, end the recursive step and return • Some optimizations

  44. Recursive Algorithm / Example

  45. Some Optimizations • Generate non-overlapping solutions can be rewritten as disjoint sets in the form , condition 2 is rewritten as: • Optimizing condition 1: returning empty set 3. Exploiting Rebuttals it is instead of when rebutts 4. Re-using computations if

  46. Recursive Algorithm Example /2

  47. ADT – Arguments Decision Tree • Decision Tree-like Algorithm. Select an argument, split, analyse the two spit sub-graphs • Which is the criteria for selecting the splitting argument? • Dialectical Strength. the dialectical strength of an argument w.r.t. , called , is defined as follows: • If is initial, is the number of arguments that are defeated by plus the arguments that result disconnected from once the arguments defeated by are removed from . • Note that, if directly attacks , then . • If x is not initial, is the number of arguments that are disconnected from after is removed.

  48. ADT /2 - Example

  49. Applications / Legal Reasoning Paul and John are under trial for the assassination of Sam. Evidence collected: • John was alone in the room between 1 to 3; the medical test says that Sam died between 1 and 3 [0.6]→ John shoot Sam • Paul was alone in the room between. 3 and 5; the medical test says that Sam died between 3 and 5 [0.4]→ Paul shoot Sam • The medical test is void [0.1] → nothing can be said on Sam’s time of death • We also , since Sam either died btw. 1 and 3 or btw. 3 and 5. • The fingerprints are Paul’s [0.7]→ Paul shot Sam btw 3 and 5 • The weapon was tampered and the test is void [0.5] → fingerprints are not a valid evidence • A witness heard a shot at 2pm [0.8], John was in the room at 2 → John shot Sam and Sam died between 1 and 3 • The number in square brackets is the probability of each premise (assume 1 if no number is specified)

  50. Argumentation Graph for the Legal Case • John is guilty when argument is in or is in. Therefore: How is changing if changes? Good points of PAF • Solid axioms • Much richer computation • Maybe useful for prob. reasoning?

More Related