840 likes | 959 Views
Understanding the Cosmic Acceleration using KDUST. Gong-Bo Zhao ICG, Portsmouth 1106.3327 (PRL submitted) 1105.0922 (PRL 11) 1011.1257(PRD 11) 1005.3810 (PASP 11) 0905.1326 (PRL 09). My main collaborators. Robert Crittenden (Portsmouth), Zuhui Fan (PKU)
E N D
Understanding the Cosmic Acceleration using KDUST Gong-Bo Zhao ICG, Portsmouth 1106.3327 (PRL submitted) 1105.0922 (PRL 11) 1011.1257(PRD 11) 1005.3810 (PASP 11) 0905.1326 (PRL 09)
My main collaborators Robert Crittenden (Portsmouth), Zuhui Fan (PKU) Aireza Hojjati (SFU), Kazuya Koyama (Portsmouth) Baojiu Li (Durham, Cambridge),Yinzhe Ma (UBC, Cambridge)Jeremiah Ostriker (Princeton, Cambridge), Levon Pogosian (SFU) Alessandra Silvestri (MIT), Lifan Wang (TAMU), Hu Zhan (NAOC) Xinmin Zhang (IHEP) KDUST workshop, IHEP, Beijing
Nobel Prize, 2011 KDUST workshop, IHEP, Beijing
Cosmic Acceleration MG DE KDUST workshop, IHEP, Beijing
KDUST Weak Lensing Galaxy Counts ISW KDUST workshop, IHEP, Beijing
KDUST is useful for DE KDUST workshop, IHEP, Beijing
KDUST Site Performance credit: Hu Zhan LSST 15000 sq. deg. Ugrizy GBZ, H.Zhan, L. Wang, Z. Fan, X.Zhang, 1005.3810, PASP 11 15000 sq. deg.: n(z) ~ z2exp(-z/0.5) Photo-z rms: sz=0.04(1+z) Photo-z bias prior: sP(dz)=0.2sz Shear calibration error: ±0.003 Residual shear power: 6×10-10 KDUST workshop, IHEP, Beijing
KDUST—LSST Synergy credit: Hu Zhan KDUST JH + LSST ugrizy 5000 sq. deg.: n(z) ~ z2exp(-z/0.6) Photo-z rms: sz=0.03(1+z) Photo-z bias prior: sP(dz)=0.2sz Shear calibration error: ±0.002 Residual shear power: 4×10-10 15000 sq. deg.: n(z) ~ z2exp(-z/0.5) Photo-z rms: sz=0.04(1+z) Photo-z bias prior: sP(dz)=0.2sz Shear calibration error: ±0.003 Residual shear power: 6×10-10 KDUST workshop, IHEP, Beijing
KDUST—LSST Synergy credit: Hu Zhan KDUST JH + LSST ugrizy 10000 sq. deg.: n(z) ~ z2exp(-z/0.6) Photo-z rms: sz=0.03(1+z) Photo-z bias prior: sP(dz)=0.2sz Shear calibration error: ±0.002 Residual shear power: 4×10-10 10000 sq. deg.: n(z) ~ z2exp(-z/0.5) Photo-z rms: sz=0.04(1+z) Photo-z bias prior: sP(dz)=0.2sz Shear calibration error: ±0.003 Residual shear power: 6×10-10 KDUST workshop, IHEP, Beijing
KDUST—LSST Synergy credit: Hu Zhan KDUST JH + LSST ugrizy 5000 sq. deg.: n(z) ~ z2exp(-z/0.6) Photo-z rms: sz=0.03(1+z) Photo-z bias prior: sP(dz)=0.2sz Shear calibration error: ±0.002 Residual shear power: 4×10-10 15000 sq. deg.: n(z) ~ z2exp(-z/0.5) Photo-z rms: sz=0.04(1+z) Photo-z bias prior: sP(dz)=0.2sz Shear calibration error: ±0.003 Residual shear power: 6×10-10 SNe:(z < 1.5) KDUST workshop, IHEP, Beijing
Reconstructing w(a) precisely R.Crittenden, GBZ, L.Pogosian, L.Samushia, X.Zhang To appear soon see Levon’s talk Straightforward to apply to KDUST data! KDUST workshop, IHEP, Beijing
KDUST is useful for MG KDUST workshop, IHEP, Beijing
On linear scale • PCA (see Levon’s talk) • Cosmic Mach Number KDUST workshop, IHEP, Beijing
Cosmic Mach Number: A robust tool to test Einstein Gravity arXiv: 1106.3327 with Yinzhe Ma (UBC, Cambridge) Jeremiah Ostriker (Princeton and Cambridge)
What is Mach Number?? KDUST workshop, IHEP, Beijing
Cosmic Mach Number (CMN) Ostriker & Suto 1990 KDUST workshop, IHEP, Beijing
The shape of velocity power spectrum can be reconstructed from CMN KDUST workshop, IHEP, Beijing
CMN data KDUST workshop, IHEP, Beijing
Cosmological applications KDUST workshop, IHEP, Beijing
WMAP7 + UNION2 +CMN (6dF) KDUST workshop, IHEP, Beijing
Power of CMN • B0<0.4 (95% CL, CMB+SN) • B0<5x10-5(95% CL, CMB+SN+CMN) KDUST workshop, IHEP, Beijing
CMN is a promising tool • Immune to galaxy bias, overall amplitude, nonlinearities • Highly sensitive to the scale-dependence of the growth, thus an ideal tool to constrain MG parameters and neutrino mass • Complimentary to weak lensing • Measure CMN from KDUST?? KDUST workshop, IHEP, Beijing
On Non-linear scale • Environmental dependence of dark matter halos KDUST workshop, IHEP, Beijing
f(R) Gravity Mimic GR at high z; Recover GR locally to pass solar system test. Accelerate the expansion at low z; KDUST workshop, IHEP, Beijing
In GR KDUST workshop, IHEP, Beijing
In f(R) lC KDUST workshop, IHEP, Beijing
In very dense regions lC KDUST workshop, IHEP, Beijing
Numerical Simulations 1011.1257 GBZ, B.Li, K.Koyama, PRD 11 • Code: Modified MLAPM • f(R) model: • Model parameters: • Cosmological parameters: WMAP7 KDUST workshop, IHEP, Beijing
Equations to solve in the code KDUST workshop, IHEP, Beijing
Get some sense… KDUST workshop, IHEP, Beijing
GR KDUST workshop, IHEP, Beijing
f(R) KDUST workshop, IHEP, Beijing
Structure formation in GR KDUST workshop, IHEP, Beijing
Structure formation in f(R) KDUST workshop, IHEP, Beijing
Dynamical Mass KDUST workshop, IHEP, Beijing
Dynamical Mass KDUST workshop, IHEP, Beijing
Dynamical Mass Spherical symmetry KDUST workshop, IHEP, Beijing
Lensing Mass KDUST workshop, IHEP, Beijing
Lensing Mass KDUST workshop, IHEP, Beijing
Lensing Mass Spherical symmetry KDUST workshop, IHEP, Beijing
Mass Difference KDUST workshop, IHEP, Beijing
In underdense environment KDUST workshop, IHEP, Beijing
In underdense environment KDUST workshop, IHEP, Beijing
In dense environment KDUST workshop, IHEP, Beijing