1 / 27

Wireless Mesh Networks

Wireless Mesh Networks. Spezialvorlesung Anatolij Zubow (zubow@informatik.hu-berlin.de). Cognitive Radio. Spectrum Efficiency and Cognitive Radio. Technological advances are forcing the wireless industry to feel the feared “spectrum crunch”.

domenicl
Download Presentation

Wireless Mesh Networks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Wireless Mesh Networks Spezialvorlesung Anatolij Zubow (zubow@informatik.hu-berlin.de) Cognitive Radio

  2. Spectrum Efficiency and Cognitive Radio • Technological advances are forcing the wireless industry to feel the feared “spectrum crunch”. • To solve the problem, there are several questions that must be addressed… What exactly is the “spectrum”? How is it used? What is the history of its evolution? Why is there a problem today? What is the solution?

  3. What is the RF Spectrum? Is it a physical block… …or an open space?

  4. The Current Wireless Paradigm • The RF Spectrum is really only a range of oscillations suitable for radio communications, and therefore, is not a true physical medium. Modeled by the Swimmer Analogy • This begs the question: Why is something inherently non-physical partitioned like a tangible object?

  5. RF Spectrum – 1.39 to 5.923 GHz

  6. The RF Spectrum Dilemma • As more and more devices are added to the wireless community, they must jockey for the right to transmit at frequencies in the same bands. • However, there exist a large number of frequency bands that have considerable, and sometimes periodic, dormant time intervals.

  7. What Solutions Exist? • The way we manage spectrum must change. • Whereas before radios were assigned “lanes” in which to operate, cognitive frequency-agile radios could now be allowed to intelligently “switch lanes” and adjust parameters. • Ultra-Wideband “underlay” transmission techniques could be employed to “talk under” primary users in a given frequency band. • Cooperative networking, specifically a mesh architecture, would allow a true web of ad hoc radio nodes, allowing each radio to act as both a transmitter and receiver in the network.

  8. Frequency-Agile Radios • Software-Defined Radios (SDR) introduce the ability for instantaneous frequency reconfiguration. • Evolution of the SDR concept leads to Cognitive Radio, defined as “an SDR that additionally senses its environment, tracks changes, and reacts upon its findings.” [Jondral-06] • User-centric vs. Technology-centric CR Operation • A preliminary step in achieving true “open spectrum” is the implementation of a cooperative Primary User-Secondary User system.

  9. Software-Defined Radio • Ziel eines SDR ist es die gesamte Signalverarbeitung eines Hochfrequenz-Senders oder -Empfängers mit Hilfe anpassbarer Hardware in Software abzubilden. • Es handelt es sich um ein Funktelekommunikationssystem, das eine software-konfigurierbare Plattform zur Modulation/Demodulation und Aufwärts-/Abwärtsmischung eines Datensignals benutzt. • Ein SDR-System führt einen Großteil der Signalverarbeitung mit einem Universalrechner (z.B. Intel X86) oder programmierbarer Digitalhardware aus (DSPs oder FPGAs)  Flexibilität • Unterschiedliche Funkverfahren können durch alleinige Änderung der Software implementiert werden. • Die Kernkomponente eines SDR ist programmierbare Digitalhardware wie FPGAs. • Ein FPGA ist ein programmierbarer Integrierter Schaltkreis (IC) der Digitaltechnik. In FPGAs können durch spezifische Konfiguration interner Strukturen die verschiedenartigsten Schaltungen gebildet werden.

  10. WIRELESS OPEN-ACCESS RESEARCH PLATFORM (WARP) • WARP ist eine programmierbare Plattform für drahtlose Kommunikation. • Ziel ist die prototypische Umsetzung von physikalischen sowie Mediumzugriff- Schichten zukünftiger drahtloser Systeme. • Open-Software/Hardware Plattform, d.h. der Community wird der Zugriff auf Software + Spezifikation der Hardware gegeben. • Für die Programmierung der PHY sowie MAC-Schicht kommt ein Xilinx FPGA zum Einsatz.

  11. WIRELESS OPEN-ACCESS RESEARCH PLATFORM WARP FPGA Board WARP Radio Board

  12. WIRELESS OPEN-ACCESS RESEARCH PLATFORM (WARP) • Besonderheiten: • Unterstützt Multiple Input Multiple Output (MIMO) • Multi-Gigabit Ethernet zum Verbinden mehrerer WARP Boards • Realisierte Prototypen für kooperative Kommunikation, Beamforming for MIMO • Testumgebungen: WiTestLab (http://witestlab.poly.edu/) • Kosten: • MIMO Kit (2 Radios) – 12 T€ • SISO Kit (1 Radio) – 10 T€ • Dokumente: • http://warp.rice.edu/

  13. Universal Software Radio Peripheral (USRP) • USRP (http://www.ettus.com/) • USRP wird mit einem Host-PC über USB2/Ethernet verbunden • Vollständige Design von USRP ist Open Source • Software: GNU Radio (http://gnuradio.org/trac) • Besonderheiten: • Verarbeitung von Wideband-Signalen, Gigabit Ethernet • Mehrere USRP-Boards können zusammengeschlossen werden  MIMO • GNURadio – sehr aktive Community (viele Projekte; GPS-Empfänger auf Basis von GNURadio/USRP) • Kosten: • Sehr günstig – ca. 1000 € für USRP • Dokumente: • USRP - http://www.ettus.com/ • GNURadio - http://www.gnuradio.org

  14. Universal Software Radio Peripheral (USRP) USRP 2 Board

  15. CalRadio • CalRadio ist ein hybrides Software-Defined Radio • Die physikalische Schicht kann nicht verändert werden • Z.Z. nur IEEE 802.11b (Intersil (Conexant) Prism chip) • Der Mediumzugriff (MAC) kann hingegen vollständig programmiert werden. • Es wird ein C5471 Texas Instruments Digital Signal Processor verwendet.

  16. CalRadio • Besonderheiten: • Programmierung des Digital Signal Processing (DSP) in C (keine spezielle Entwicklungsumgebung) • Linux als Betriebssystem (ARM Prozessor) • Zur Zeit lediglich ein RF Frontend (802.11b) • Kosten: • Hardware - 2 T€ • Dokumente: • http://calradio.calit2.net/ CalRadio Architektur

  17. A Software-Defined GPS and Galileo Receiver • Ziel ist die Entwicklung eines kombinierten GPS/Galileo Empfängers auf der Basis von SDR. • Dokumente: • http://ccar.colorado.edu/gnss/ • http://www.amazon.com/Software-Defined-GPS-Galileo-Receiver-Single-Frequency/dp/0817643907 • http://www.sparkfun.com/commerce/product_info.php?products_id=8238 SDR captures raw GPS data

  18. Spectrum Leasing Spectrum Pooling is the concept that a non-licensed radio may use a given frequency when the original licensee is not. There are two approaches to the leasing of spectrum pools with which the license owner may operate: • The license owner is aware of other radios using its allocated frequency band. It may avoid other radios, but has the right to reclaim any frequency. • The license owner is completely unaware of the presence of other radios, forcing them to change.

  19. Application - CORVUS System A new spectrum management system (CORVUS*) has been designed, based upon: • Abundance of spectra available for sharing • Secondary Users utilizing Cognitive Radio technology This system is comprised of cognitive-unaware Primary Users (PUs) and cognitive-capable Secondary Users (SUs). * “A Cognitive Radio Approach for Usage of Virtual Unlicensed Spectrum”, Čabrić, Mishra, Willkomm, Brodersen, Wolisz

  20. Two Kinds of Users • Primary User • Cognitive Radio unaware • Does not need to provide special signaling to access its frequency band (F-Band) • PUxcan tolerate maximal interference for Δtx seconds • Each PU has its own unique Primary User Footprint (PUF) with which it can be identified • Secondary User • All SUs possess cognitive radio capablity • Monitors the presence of PUs at least every Δtx seconds • “Listen before talk” to not disrupt PU activity • Form Secondary User Groups (SUGs) to facilitate SU communication and coordination • SUs use logical sub-channels to inter-communicate

  21. CORVUS Spectrum Pooling • Defined as a frequency range used by a SUG, which may overlap with other SUG spectrum pools • Divided into n Sub-Channels, being a small fraction of the spectrum pool • Secondary User Links (SULs) are formed with Sub-channel patterns over multiple F-Bands

  22. CR Efficiency and Interference The system must evaluate how well the CR-capable SUs avoid interfering with PU transmissions. • Interference Metric • Spectrum Efficiency

  23. System Functions • Cognitive capabilities will be achieved in the Physical and Link layers of radio design • The following six system functions can be distributed between these two layers: • Spectrum Sensing • Channel Estimation • Data Transmission • Group Management • Link Management • Medium Access Control (MAC)

  24. Requirements for CR • Dynamic Spectrum Developments • Spectrum Etiquette (“Listen before talk”) • Bandwidth Snapshot (frequency monitoring) • Provide Operating Information to Owner • Global Positioning Knowledge • Group Cooperation and Planning

  25. Future Work Facing CR • Using elements of game theory, CR interactions can be modeled and predicted to optimize behavior. • Radio metrics must be redefined to better analyze frequency availability (spectrum sensing) and radio sensitivity (transmission power). • Much like the Traffic Analogy, SUs must intelligently recognize PUs and yield to their transmission. • Federal Regulations and Incumbent Frequency Band Licensees pose a valid threat to CR advancement.

  26. Other Spectrum Efficiency Solutions • Ultra Wideband (UWB) - RF Interference is non-destructive, allowing radios to “talk” through each other due to the receiver’s ability to intelligently identify the speaker. • Many conversations can occur within the same space when volume is limited, highlighting the need for power constraints. • Cooperative mesh networking is equivalent to note passing amongst each “person” in the room. As the crowd increases, coverage and throughput also increase.

  27. Resources • http://web.syr.edu/~ejhumphr/

More Related