1 / 6

求函数的值域

求函数的值域. 基础练习. 1. 已知函数 f(x)=2x - 3, x∈{0,1,. 2,3,5}, 则 f(x) 的值域是 :. { - 3, - 1, 1, 3, 7}. 2. 函数 y=x 2 +4x+6 的值域是 :. [ 2, +∞). 例题讲解. 1. 求下列函数的值域 :. ① y=4x - 5, x∈( - 1, 2]. ② y= - x 2 - 2x+3, x∈[ - 5, 0]. ③ y=. 2. 求下列函数的值域 :. ① y= (x≠3). ② y=. 课堂小结.

donar
Download Presentation

求函数的值域

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 求函数的值域

  2. 基础练习 1. 已知函数f(x)=2x-3, x∈{0,1, 2,3,5}, 则f(x)的值域是: {-3, -1, 1, 3, 7} 2. 函数y=x2+4x+6 的值域是: [ 2, +∞)

  3. 例题讲解 1. 求下列函数的值域: ① y=4x-5, x∈(-1, 2] ② y=-x2-2x+3, x∈[-5, 0] ③ y=

  4. 2. 求下列函数的值域: ① y= (x≠3) ② y=

  5. 课堂小结 求函数的值域的方法: (1) 观察法; (2) 图象法; (3) 分式分离常数法; (4) 解x法; (5) 配方法; (6) 函数单调性法; (7) 分段函数法.

  6. 作业 求下列函数的定义域和值域: (1) y= (2) y= (3) y= x2-4x+5, x∈[0, 5] (4) y= Good bye ! (5) y=

More Related