1 / 15

Indecsau

Indecsau. Gallwn ddefnyddio’r ffaith bod a x a = a 2 i symleiddio : a x a x a =. a 3. c x c x c =. c 3. b x b x b x b =. b 4. Hefyd, gallwn ddefnyddio hwn i symleiddio lluoswm sawl term tebyg:. a x a x b x b x b =. a 2 x b 3. a x b x b x b x a =. a 2 x b 3.

donar
Download Presentation

Indecsau

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Indecsau

  2. Gallwn ddefnyddio’r ffaith bod a x a = a2 i symleiddio : a x a x a = a3 c x c x c = c3 b x b x b x b = b4 Hefyd, gallwn ddefnyddio hwn i symleiddio lluoswm sawl term tebyg: a x a x b x b x b = a2 x b3 a x b x b x b x a = a2 x b3 I osgoi cymlethdod yn y dyfodol ysgrifennwn a2 x b3 fel a2 b3, hynny yw heb yr arwydd lluosi.

  3. Ymarfer • Newidiwch y canlynol i’r ffurf indecs: • d x d x d = • e x e x e x e x e x e = • d x d x c x c x c = • a x a x a x d x d = • b x b x a x a x b = • b x b x c x a x c x c x a = • b x a x c x b x c x a x c x c =

  4. RHEOLAU INDECSAU Rheol 1: Lluosi Indecsau Ystyriwn a2 x a3 a x a x a x a x a = a5 b3 x b3 b x b x b x b x b x b = b6 Y rheol gyffredinol: am x an = am + n Rydym ond yn gallu adio’r indecsau pan mae’r llythyren yr un peth

  5. Ymarfer 8. a4 x a7 x a5 9. b7 x b3 x b3 10. c9 x c4 x c-2 11. d-7 x d4 12. e-4 x e –2 13. f-7 x f-5 14. g2 x g3 x g-5 • a3 x a4 • b4 x b3 • c2 x c 5 • d5 x d7 • e4 x e-3 • f -5 x f4 • g -4 x g-2

  6. Rydym yn gallu gwneud yr un peth gyda rhifau Enghraifft 23 x 22 = 2 x 2 x 2x 2 x 2 = 25 Ymarfer 5. 64 x 67 x 65 6. 77 x 73 x 73 7. 89 x 84 x 8-2 8. 9-7 x 94 1. 23 x 24 2. 34 x 33 3. 42 x 4 5 4. 55 x 57

  7. Rheol 2: Rhannu Indecsau RHEOLAU INDECSAU Ystyriwn a5 ÷ a2 a x a x a x a x a a x a = a x a x a = a3 Y rheol gyffredinol: am ÷ an = am - n

  8. Ymarfer • 8. 210 ÷ 24 • 9. 34 ÷ 33 • 10. 47 ÷ 4 • 53 ÷ 5-2 • 64 ÷ 67 • 13. 77 ÷ 73 • 14. 89 ÷ 84 • a6 ÷ a4 • b8 ÷ b3 • c7 ÷ c 3 • d5 ÷ d7 • e4 ÷ e-3 • f -5 ÷ f4 • g -4 ÷ g-2

  9. RHEOLAU INDECSAU Rheol 3: Codi Indecs i bŵer arall Ystyriwn (a2 ) 3 Mae hwn yn golygu a2 x a2 x a2 = a6 Y rheol gyffredinol: (am)n = am x n

  10. Ymarfer • 8. (210)4 • 9. (34)3 • 10. (47)2 • (53)-2 • (64)7 • 13. (77)3 • 14. (89)-4 • (a6)4 • (b8)3 • (c7)3 • (d5)7 • (e4)-3 • (f -5)4 • (g -4)-2

  11. RHEOLAU INDECSAU Rheol 4: Indecsau Negatif Gwyddwn fod a2 ÷ a5 = a-3 ond hefyd gallwn ystyried y broblem mewn ffurf mwy syml: a2 ÷ a5 = a x a = 1 = 1 a x a x a x a x a a x a x a a3 Felly mae a -3 = 1 a3 a-n = 1 an Y rheol gyffredinol:

  12. RHEOLAU INDECSAU Rheol 5: Indecsau Israddau Mae angen darganfod pa bŵer sy’n cynrychioli’r arwydd √. Ystyriwn bod rhaid i a* x a* = a, ac felly a *+ * = a Os yw * + * = 1. rhaid bod * = ½ Felly, √a = a1/2 Y rheolau cyffredinol: na = a1/n ac n(am) = am/n = (na)m Enghreifftiau a = a1/2 4a = a1/4 5a = a1/5

  13. RHEOLAU INDECSAU Rheol 6: Indecsau 0 a 1 a0 = 1 Y rheolau cyffredinol: a1 = a Enghreifftiau 60 = 1g1 = g14760 = 1

  14. Enghreifftiau symleiddio (6f4 x 4f2 ) ÷ 2f5 = 24f6 ÷ 2f5 = 12f (4g7 ÷ 2g-3) x 5g-6 = 2g10 x 5g-6 = 10g4 [(a5/2 x a-1/2) ÷ a-2]3/2 = [a2 ÷ a-2]3/2 = [a4]3/2 = a6

  15. Ymarfer • Symleiddiwch: • (82)-1 11. 2a2 x 3a6 • (53) 0 12. 8a6 ÷ 2a4 • 321/5 13. 4x14 ÷ 2x -2 • 4. 91/2 14. (2f2 x 6f5 ) ÷ 3f3 • 5. 16 15. (24g8 ÷ 3g-5 ) x 2g-3 • 6. 2-3 16. (a3 x a2)÷ a-4 • 7. 820 17. 811/4 • 8. 251/2 18. -641/3 • 9. 4 16 19. 3 -3 • 10. 81/3 20. 125-1/3

More Related