260 likes | 445 Views
Discrete Fourier Transform. Multiply element-by-element. Cumulative sum shows:. 2 signals of same frequency and phase. Multiply element-by-element. Non-zero cumulative sum. Same frequency but /2 phase difference. Element-by element product with both sine and cosine waves.
E N D
dftsimp2demo(f, fs, timelen, amp) dftsimp2demo(200, 1000, 0.02, 1)
dftsimp2demo(f, fs, timelen, amp) dftsimp2demo(200, 1000, 0.05, 1)
dftsimp2demo(f, fs, timelen, amp) dftsimp2demo(200, 10000, 0.05, 1)
dftcomplex2demo(f1, f2, fs, timelen, a1, a2) dftcomplex2demo(200, 400, 10000, 0.02, 5, 4)
dftcomplex2demo(f1, f2, fs, timelen, a1, a2) dftcomplex2demo(200, 400, 10000, 0.02, 5, 4)
dftspeech2demo(wavfile, timelen) dftspeech2demo('atest.wav', 0.04)
dftspeech2demo(wavfile, timelen) dftspeech2demo('atest.wav', 0.04)
dftspeech2demo(wavfile, timelen) dftspeech2demo(‘itest.wav', 0.04)
dftspeech2demo(wavfile, timelen) dftspeech2demo(‘itest.wav', 0.04)
DFT Procedure • Given the window (frame) length, decide the base frequency • Multiply by sine wave at each multiple of base frequency • Multiply by cosine wave at each multiple of base frequency • Calculate magnitude and phase spectra using
Complex Exponential • Given the window (frame) length, decide the base frequency • Multiply by sine wave at each multiple of base frequency • Multiply by cosine wave at each multiple of base frequency • Calculate magnitude and phase spectra using
Compact Formulae • DFT • IDFT