1 / 16

Ideal Source

Ideal Source. In an ideal source, all the internal energy or power, e.g., the chemical reaction in a battery, is available to the load without any “losses” in the form of heat. An ideal battery is shown symbolically as. An ideal voltage source (battery) in series with a load (light bulb):.

dong
Download Presentation

Ideal Source

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ideal Source In an ideal source, all the internal energy or power, e.g., the chemical reaction in a battery, is available to the load without any “losses” in the form of heat. An ideal battery is shown symbolically as

  2. An ideal voltage source (battery) in series with a load (light bulb): • Find the following: • The current through the bulb whose resistance is Rb = 2.5 Ω. • The power consumed by the light bulb in W. • The power supplied by the ideal battery in W.

  3. Solutions The current drawn by the bulb is I = Vsource / Rbulb = 1.5 / 2.5 = 0.6 A The power consumed by the bulb is Pbulb= I2Rbulb = (0.6 A)2 2.5 = 0.9 W The power supplied by the ideal battery is Psource = V I = 1.5 (0.6) = 0.9 W From the law of the conservation of energy, Psource = Pbulb

  4. Real Source • Real sources have an internal resistance. • This is not a visible resistor like you used in the lab, but it is a “model resistor” added to the circuit to analyze the source realistically. • The internal resistance causes energy loss (dissipated heat for example) and causes the source to provide less energy to the load.

  5. Ideal source (battery) in series with a load (light bulb) Real source (battery with internal resistance) in series with a load (light bulb)

  6. Repeat the previous exercise with a real 1.5 V battery source. Assume the battery’s internal resistance to be 0.3Ω. Find the following: Current through the bulb Power consumed by the bulb Power supplied by the ideal portion of the battery Power consumed by the battery’s internal resistance.

  7. Req= Rinternal + Rb = 0.3 + 2.5 = 2.8 Ω • Current: I = 1.5 V / 2.8 Ω = 0.536 A • Power consumed by the bulb: Pbulb = I2Rbulb = (0.5357 A)2 2.5 Ω =0.717 W • Power provided by the ideal portion of the battery:Psource = V I = 1.5V(0.5357 A) =0.803 W • Power consumed by the battery’s internal resistance:Pinternal = I2 Rinternal = (0.5357 A)2 0.3 Ω =0.086 W

  8. Ideal Source: I = 0.6 A Pbulb = 0.9 W Psource = 0.9 W Real Source: I = 0.536 A Pbulb = 0.717W Psource = 0.803W Pinternal = 0.086 W (dissipated as heat) Comparison with Previous Results Balance of power: Psource= Pbulb 0.9 W = 0.9 W Balance of power: Psource= Pinternal+ Pbulb 0.803W = 0.086W + 0.717W

  9. Connection to Real Life • As batteries age, their internal resistance increases. • That means, even if you measure 1.5 V across the terminals with a meter, when you connect it to a load, it will provide a lower net voltage

  10. In-Class Activity • Given this circuit where the real battery has been connected for a while. • Assume the bulb needs at least 0.4 A to light. • What will the internal resistance be when the bulb goes dark? • What voltage will be measured across the bulb at that time?

  11. Question Can the bulb be replaced by a different bulb to maximize the power delivered to the bulb for a given battery voltage and internal resistance (Ri) ? In other words, if you replace the bulb with a symbolic resistance Rb as shown here, can you find the value of Rb for maximum bulb power?Start by expressing thepower absorbed by thebulb in terms of V and bothR’s.

  12. Power Absorbed by Bulb • Pb = Ib * Vb • Ib =(in terms of Rb, Ri and Vs) • Vb = (in terms of Rb, Ri and Vs) • Therefore, Pb =

  13. The power absorbed by the light bulb is given by where Pb = bulb power (W) Rb = bulb resistance (Ω) Ri = internal resistance (Ω) Vs = battery voltage (V)Is there a value of Rb that maximizes Pb?

  14. Graphical ApproachIn-Class Activity Use Excel to generate a table of Pbas a function of Rb for V = 1.5 V and Ri = 0.3 Ω. Choose values of Rb from 0 Ω to 0.8 Ω in 0.05 Ω steps. Plot your data using the “Scatter Plot”

  15. Vs = 1.5 V Ri = 0.3 Ω What is Pb for Rb= 0? What is Pbfor Rb → ∞ ? From the curve, identify what value of Rb makes Pb maximum.

  16. AnalyticalApproach • In calculus you’ve learned about derivatives. • The first derivative of a function is a measure of its slope (rise/run). • When we take the derivative of our power function with respect to Rb, we find that the slope is zero at the maximum. • The value of Rb at that maximum will be Rb = Ri

More Related